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We develop a simple model of futures arbitrage that implies that if purchases by commodity index funds influence
futures prices, then the notional positions of the index investors should help predict excess returns in these contracts.
We find no evidence that the positions of index traders in agricultural contracts as identified by the Commodity
Futures Trading Commission can help predict returns on the near futures contracts. Although there is some support
that these positions might help predict changes in oil futures prices over 2006-2009, the relation breaks down out of
sample.

1. INTRODUCTION

The last decade has seen a phenomenal increased participation by financial investors in com-
modity futures markets. A typical strategy is to take a long position in a near futures contract
and, as the contract nears maturity, sell the position and assume a new long position in the
next contract, with the goal being to create an artificial asset that tracks price changes in the
underlying commodity. Barclays Capital estimated that exchange traded financial products fol-
lowing such strategies grew from negligible amounts in 2003 to a quarter trillion dollars by 2008
(Irwin and Sanders, 2011). Stoll and Whaley (2010) found that in recent years up to half of the
open interest in outstanding agricultural commodity futures contracts was held by institutions
characterized by the Commodity Futures Trading Commission (CFTC) as commodity index
traders.

This trend has been accompanied by a broad public perception that increased participation
by financial institutions in commodity futures markets has made an important contribution to
the increase in commodity prices observed since 2004. This position has been championed,
for example, by hedge fund manager Michael Masters in testimony before the U.S. Congress
(Masters, 2008) and former Congressional Representative Joseph Kennedy (Kennedy, 2012).

Surveys of previous academic studies by Irwin and Sanders (2011) and Fattouh et al. (2013),
as well as our own review in Section 2, failed to find much empirical support for these claims.
What accounts for their continued prominence in policy discussions? Masters (2009) saw the
case as simple and clear-cut:

Buying pressure from Index Speculators overwhelmed selling pressure from producers and the result
was skyrocketing commodity prices.

This claim involves two separate links: first, that increased volume on the buy side drives
up the price of a futures contract and, second, that higher futures prices would be sufficient
on their own to produce an increase in spot prices. Possible channels for the second link have
been discussed by Hamilton (2009), Kilian and Murphy (2014), Knittel and Pindyck (2013), and
Sockin and Xiong (2013). In this article we focus on the first link—by what mechanism could
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188 HAMILTON AND WU

increased index-fund buying affect the equilibrium price of a futures contract and how would
we look for evidence of such an effect?

After reviewing the previous literature in Section 2, we sketch in Section 3 a simple model in
which an increased volume of buy orders could affect futures prices by changing the equilibrium
risk premium. We show that an implication of this framework is that regressions similar to those
run by previous researchers can be a useful way to measure the impact of index-fund investing
on commodity futures prices. We note that according to our theoretical formulation, it would be
the notional positions of the index-fund investors rather than the number of contracts or related
measures that would help predict log returns if index investing were having a significant effect.
In Section 4, we use data on the 12 commodities covered by the Supplemental Commitment
of Traders (SCOT) and find, consistent with most of ‘the earlier literature, that index-fund
investing seems to have had little impact on futures prices in these markets. Section 5 examines
the evidence on oil markets. We first reproduce some of the findings in Singleton (2014) that are
consistent with the claim that index-fund buying affected oil futures prices. We then review the
criticisms raised by Irwin and Sanders (2012) about Singleton’s method for inferring the crude oil
positions of index-fund traders and generalize the methiod to mitigate some of these criticisms.
We find that although such measures still fit in sample, their out-of-sample performance is poor.
Our conclusions are summarized in Section 6.

2.  PREVIOUS LITERATURE ON THE EFFECTS OF INDEX-FUND INVESTING ON COMMODITY
FUTURES PRICES

One piece of evidence sometimes viewed as supportive of the view that financial speculation
has played a role in recent commodity price movements is the observation that the correlation
between commodity price changes and other financial returns has increased substantially in
recent years. Tang and Xiong (2012) found this correlation is stronger among commodities
included in the main index funds than for commodities not included, and Buyuksahin and
Robe (2010, 2011) related these correlations specifically to micro data on positions of different
types of commodity traders. However, as Fattouh et al. (2013) noted, the increasing correlation
could also be attributed to an increasing importance of common factors, such as the growing
importance of emerging markets in both commodity markets and global economic activity and
the global character of the financial crisis in 2007-2009, factors to which commodity traders
would logically respond.

Another approach uses structural vector autoregressions. One common strategy is to interpret
a simultaneous unanticipated rise in prices and commodity inventories as reflecting speculative
demand pressure, Kilian and Murphy (2014) and Kilian and Lee (2014) concluded that such
a model rules out speculative trading as a possible cause of the 2003-2008 surge in oil prices.
In related work, Lombardi and van Robays (2011) and Juvenal and Petrella (forthcoming)
found only a small role for speculation using alternative specifications. In addition to sensitivity
to specification, there is a fundamental identification challenge in using these strategies to
distinguish a rise in prices and inventories that results from destabilizing speculation from one
that represents a socially optimal response to rationally perceived future market tightness.

A third strand in the literature examines whether changes in commodity futures prices could
be predicted on the basis of the positions of different types of commodity traders. Here again,
the evidence is mostly negative. Brunetti et al. (2011) used proprietary CFTC data over 2005—
2009 on daily positions of traders disaggregated into merchants, manufacturers, floor brokers,
swap dealers, and hedge funds. They found that changes in net positions of any of the groups
did not help to predict changes in the prices of futures contracts for the three commodities they
studied (crude oil, natural gas, and corn). Sanders and Irwin (2011a) used the CFTC’s publicly
available Disaggregated Commitment of Traders Report on weekly net positions of swap dealers
and found that these were of no help in predicting returns on 14 different commodity futures

2 For further discussion see Kilian and Murphy (2012) and Fattouh et al. (2013).
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contracts over 2006-2009, Sanders and Irwin (2011b) used proprietary CFTC data to extend the
public SCOT, which categorizes certain participants as commodity index traders, back to 2004,
They found that changes in the positions of index traders did not help predict weekly returns
for corn or wheat but found some predictability for soybeans under some specifications. Stoll
and Whaley (2010) used the public SCOT for 12 agricultural commodities over 2006-2009 and
found that changes in the long positions of commodity index traders predicted weekly returns
for cotton contracts but none of the other 11 commodities. Alquist and Gervais (2011) used
the public CFTC Commitment of Traders Report to measure net positions of commercial and
noncommercial traders and found that changes in either category could not predict monthly
changes in oil prices or the futures-spot spread over 2003-2010, though there was statistically
significant predictability when the sample was extended back to 1993. Irwin and Sanders (2012)
used the CFTC’s Index Investment Data on quarterly positions in 19 commodities held by
commodity index funds. They found that in a pooled regression, changes in these positions did
not predict futures returns over 2008-2011. They also separately analyzed whether changes in
futures positions of a particular oil- or gas-specific. exchange-traded fund could predict daily
returns on those contracts over 2006-2011 and again found no predictability. Buyuksahin and
Harris (2011) used proprietary CFTC data on daily positions broken down by noncommercials,
commercials, swap dealers, hedge funds, and floor broker-dealers. They found the last category
could help predict changes in oil futures prices one day ahead, but no predictability for any of
the other categories or other horizons. By contrast, Singleton (2014) found that a variety of
measures, including a 13-week change in index-fund holdings imputed from the SCOT, could
help predict weekly and monthly returns on crude oil futures contracts over September 2006 to
January 2010.

As we will see in Section 3, it is possible to motivate regressions similar to these from a simple
model of risk premia in commodity futures contracts. Keynes (1930) proposed that risk premia
in commodity futures prices could arise from the desire of producers of the physical commodity
to hedge their price risk by selling futures contracts. In order to persuade a counterparty to take
the other side, the equilibrium price of a futures contract might be pushed below the expected
future spot price to produce a situation sometimes described as “normal backwardation.”
Evidence on backwardation is mixed. Carter et al. (1983), Chang (1985), Bessembinder (1992),
and De Roon et al. (2000) provided empirical support for such an interpretation of the risk
premium in commodity futures, whereas Marcus (1984), Hartzmark (1987), and Kolb (1992)
concluded that it does not hold as a general characterization.

Cootner (1960) argued more generally that hedging pressure (of which the desire by Keynes’s
producers to sell forward is one example) could lead to expected returns for positions in
futures contracts as a necessary inducement to potential counterparties to take the other side
of the contract from the hedgers. Applying this idea to recent developments in commodity
futures markets, Brunetti and Reiffen (2011), Acharya et al. (2013), Cheng et al. (2012), and
Hamilton and Wu (2014) proposed that the growing volume of commodity index investors
could produce hedging price pressure on the buy side, with Hamilton and Wu (2012) finding
that the average compensation to the long position in oil futures contracts has decreased, but
become substantially more volatile since 2005. Etula (2013), Acharya et al. (2013), Danielsson
et al. (2011), and Cheng et al. (2012) have stressed the role of limited working capital on
the part of potential arbitrageurs as the key factor determining how much the futures price
might deviate from the expected future spot price. In the following section, we follow Hamilton
and Wu (2014) in using a simple quadratic objective function as an approximation to a more
detailed model of the capital limitations of potential arbitrageurs. Hamilton and Wu (2014)
used this framework to infer risk prices from the predictability of futures returns based on
their own lagged values. By contrast, in this article we study the relation between futures
returns and lagged observations on the contract positions of commodity-index traders and
show how the framework can be used to motivate and interpret some simple regression tests
of the hypothesis that index-fund investing has an independent effect on commodity futures
prices.
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3. INDEX-FUND INVESTORS AND THE PRICE OF RISK

Let F,y, denote the price of a commodity associated with an n-period futures contract agreed
upon at date ¢. Entering such a contract requires maintaining a margin account, to which funds
must be added if the market moves against the trader and from which funds can be withdrawn
if the market moves in the trader’s favor. Following Duffie (1992, p. 39), one can think of the
initial margin deposit as funds that the trader would have held in that form in any case. From
that perspective, each unit of the commodity purchased through a long position in the contract
is associated with zero initial cost and a cash flow at t + 1 of F,,_1 441 — Fy. If index-fund buyers
want to take the long side of the contract, somebody else must be persuaded to take the short
side. We will refer to the index fund’s counterparty as an “arbitrageur” and assume that what
the arbitrageur cares about is the mean and variance of her composite portfolio. Let z,, denote
a representative arbitrageur’s notional exposure (with z, > 0 denoting a long position and
Zu < 0 a short); thus for example, z,,/F; is the number of barrels of oil purchased through an
n-period contract. An arbitrageur who takes a position z, would experience a cash flow at time
t+ 1 given by

Fpot41— Fue
1 | ——— |
( ) Z”lt Fnt :|

In addition to potential positions in a variety of futures contracts, we presume that the arbi-
trageur also invests amounts gj, in assets j =0,1...,J (where asset j =0 is presumed to be
risk free). If the gross return for asset j between ¢ and £ 4 1 is represented as exp(r,+1), then
the arbitrageur’s wealth at ¢ 4+ 1 will be

! N OF 141 — Ft
n—l, I
W1 =Y G exp(rjm1) + ) au——r—.
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subject to Zf=0 gjr = W,. We also conjecture that in equilibrium log asset returns and commodity
futures prices are affine functions of a vector of factors x;,

(3) fntzlogFm=05n+ﬁ:1xt n=1,...,N

”jr=§j+‘lf,{xt i=1...J,
where the factors themselves can be described using a Gaussian vector autoregression:
4) Xyl = €+ px+ Dtppr ue ~ 1id. N(O, L),
Under these assumptions, Hamilton and Wu (2014) showed that

J

E(Wii1) = qor(1 =+ ro41) + Z g [1+& + yie + pxi) + (1/2)1/@{22/%]
j=1

N
) + 3 e [t + By (e + pxe) — o = By + (1/2)B, 1 BT Bua]

n=1




COMMODITY FUTURES PRICES 191

J N | J N
(6) Var, (W) ~ | D qibf + ) zuByoy | S| D qi¥j + Y 2eBe-t

j=1 n=1 j=1 =1

The arbitrageur’s first-order condition associated with the choice of z,, is then characterized by

(7) p-1 + ﬂ;z_l(c + ,Oxr) — 0Oy — ﬂ;xt + (1/2)ﬂ;1~1221,311—1 = ﬂ;—l)\h

where A, depends on the positions that arbitrageurs take in the various contracts according to

o N
(8) A= yny Z qjcj + Z‘Zerﬂe—l

j=1 e=1

If we further conjecture that in equilibrium, these positions are also affine functions of the
underlying factors,

(9) A’f = A + AX[,

then Equations (7) and (9) turn out to imply a recursion that the commodity-futures loadings
oy and B, would satisfy that they are very similar to those used in affine models of the term
structure of interest rates (e.g., Ang and Piazzesi, 2003).

The term A, allows the possibility of nonzero expected returns in equilibrium and is often
referred to as the price of risk. If arbitrageurs are risk neutral, then y and A, in (8) are both
0 and (7) implies that the expected net gain from any futures position (1) is always zero.
More generally, with nonzero y, Equation (8) describes how changes in arbitrageurs’ risk
exposure coming from changes in gj, or z; would be associated with changes in expected returns.
In particular, consider the effects of an exogenous increase in index-fund buying pressure
on the nth contract. In equilibrium, prices must be such so as to persuade arbitrageurs to
take the opposite side, that is, the values of o, and 8, must be such that (7) holds for z,, given
by the necessary negative magnitude. Higher buying must be matched by more negative values
for z,,, which change the risk premium in (7) through (8).

Hamilton and Wu (2014) estimated values of the structural parameters of this system
(c, p, T, A, A) by inferring factors indirectly from the observed time-series properties of oil
futures prices. By contrast, in this article, we propose to use direct observations on the positions
of index-fund investors. Note that we can substitute (4), (3), and (9) into (7) to deduce

(10) fn—-l,t+1 - fnt = Kkp-1+ W;,_yxt + &n—1,141,

where the theory predicts «,—1 = B, _ ;A — (1/2)B,_Z% By-1, 7,_; = B,_1A and &,_141 =
B,,_1 Zura. Thus a core implication of this model of risk aversion is a linear relation between
the expected log returns and the notional positions z,, of arbitrageurs in commodity futures
contracts. Note that if arbitrageurs are risk neutral (y = 0), then we should find 7,_; = 0. On
the other hand, risk-averse arbitrageurs would require compensation for taking the opposite
position from index-fund buyers. If index funds are long, arbitrageurs are short, and expect sub-
sequently to close their futures positions at a price lower than the initial contract. This would
imply a negative coefficient on the element of x; corresponding to a measure of the level of
index-fund buying—if index buying makes the price of a futures contract higher than it would
otherwise be, the expected excess return for a long position on that contract would be negative.
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The framework thus provides a motivation and interpretation for regressions similar to those
reviewed in Section 2.

As a simple example, suppose that ¢ represents months and that index-fund investors always
desire a long position with notional exposure K; in the two-month contract, selling their position
as the month comes to a close in order to take a position K, in the new two-month contract.
Then prices must be such that in equilibrium,

_|-K, ifn=2
=10 otherwise
In the absence of other risk factors, we would then from (8) have the following simple expression
determining the price of commodity-futures risk:

(11) M= —yETBK,.

If we postulate an additional vector of factors x} that matter for commodity price fundamentals
in determining the value of fy,, then the complete vector of factors is given by x, = (K, x7)’ and
we have that f,; = a, + B,x;, with futures prices being a function of both fundamentals x} and
index-fund buying K,.3 If we were to rule out feedback from futures prices to fundamentals
through mechanisms investigated by Knittel and Pindyck (2013) and Sockin and Xiong (2013),
the first element of By would be zero, but the first element of g, would generally be nonzero for
alln > 0.4 '

In principle, performing the regression (10) would require observation on the demands for
futures contracts coming from all the arbitrageurs’ counterparties, which would include not just
index-fund traders but also commercial hedgers, as well as all other factors influencing risk of any
other assets held by arbitrageurs. There is nonetheless a robust implication of the reduced-form
Equation (10). Unless the positions of commercial hedgers and index-fund traders are perfectly
negatively correlated, the positions of index-fund traders will be correlated with the net buying
pressure facing arbitrageurs. If the latter is exerting a significant effect on the pricing of futures
contracts, we should find a nonzero coefficient on 7,1 in (10) when x; is based on observable
measures of the notional positions taken by index-fund traders. We look for empirical evidence
of such an effect in the next section.

4, PREDICTING FUTURES RETURNS FOR AGRICULTURAL COMMODITIES

For 12 agricultural commodities, since 2006 the CFTC has been providing through its Sup-
plemental Commitments of Traders Report weekly positions for traders it characterizes as
“replicating a commodity index by establishing long futures positions in the component mar-
kets and then rolling those positions forward from future to future using a fixed methodology”
(CFTC, 2012). Although some of these index traders are pension funds or other managed funds
taking a direct position in futures contracts, the majority represent positions by swap dealers,
who offer their clients an over-the-counter product that mimics some futures-based index (Stoll

3 In the particular example (11) as well as many instances of the general model (7) to (9), the factors x; would be
spanned by the set of commodity futures and asset prices. However, our empirical specification (10) is also appropriate
for the more general case of unspanned factors, The regression (12) looks for a relation between an excess return
between dates ¢ and ¢ + 1 and an observable variable at date ¢ that is not constructed directly from date ¢ prices,

4 In the above-mentioned example in which index funds want only the two-month contract at time ¢, an arbitrageur
who shorts this contract is exposed to the complete vector of factor risks associated with this contract through g x..1,
including, for example, fundamental uncertainty about the price of the underlying commodity. Assuming these fun-
damentals are positively serially correlated, if there was zero expected return associated with a one-period contract
purchased at #, an arbitrageur would want to be long this contract to hedge some of the risk associated with being short
the two-period contract. Since there is no one to take to the other side of this one-period contract, equilibrium then
requires a negative expected return on a one-period contract purchased at f just as on a two-period contract purchased
at t. For details see Hamilton and Wu (2014).
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and Whaley, 2010). The swap dealers are thus implicitly short in futures agreements arranged
over the counter and hedge with an offsetting long position on organized exchanges that get
reported to the CFTC. Although the CFTC designations are not without some problems (Stoll
and Whaley, 2010; Cheng et al., 2012), these appear to be the best high-frequency data that are
publicly available for our purposes.

The SCOT is released on a Friday and reflects positions as of the preceding Tuesday. Let ¢
denote a week ending on a particular Tuesday and X; the long positions (measured in number
of contracts) being held by commodity index traders as identified by SCOT. Let F, denote the
price of the near contract as of the market close on the day for which SCOT reports X,.> If this
is the contract being held by a typical index trader, then

i
TR

-%t = IOO(IHXt + lnF,«)

would correspond to the log of index traders’ notional éxposure.®

Our interest centers on the predictability of 7,, the weekly return of a given contract.” The first
two rows within each block of Table 1 réport coefficients and standard errors for the following
regression estimated for ¢ running from April 11, 2006, to January 3, 2012:

(12) 1y =a1 + Q11 + mwiX1 + &y

The coefficient estimates ¢; and #; are not statistically significantly different from zero for
any of the 12 commodities for which index trader positions are reported, and adjusted R?
for these regressions are usually negative. This result is consistent with the large number of
previous studies discussed in Section 2 that have found limited predictability of commodity
futures returns using related regressions.

Equations (4) and (10) can be viewed as the central implications of the model of risk pricing
sketched in Section 3. Given observed data on futures prices and x,, it is straightforward
to estimate the unrestricted reduced-form implications of these models using ordinary least
squares. These coefficients could then be used to infer values for the parameters (c, p, T, A, A)
of the structural model using methods described by Hamilton and Wu (2012, 2014), and in fact
this simple, intuitive approach to estimation turns out to be asymptotically equivalent to full
information maximum likelihood estimation of the model. However, when the key reduced-
form parameters ¢ and n are statistically indistinguishable from zero, one would have little
confidence in any values for the risk-pricing parameters in A that one might infer from the data,
and for this reason we have chosen not to try to go beyond the simple reduced-form estimates
reported here. Our conclusion is that although in principle index-fund buying of commodity
futures could influence pricing of risk, we do not find confirmation of that in the week-to-week
variability of the notional value of reported commodity index trader positions,

If the factors governing the price of risk are stationary, the dependent variable in (12)
would be stationary, in which case one might prefer to use the weekly change in index-trader
notional positions rather than the level as the explanatory variable. The third and fourth

5 Daily futures prices were purchased from Norma’s Historical Data (http://www.normashistoricaldata.com/). For
a few days in our sample, SCOT data are reported for days on which we have no closing futures prices, For these
observations, we used the futures price as of the following day.

§ Note that X ¢ is measured as number of contracts, so that the true measure of notional exposure would further
multiply X by the number of barrels of oil in a single contract, This would simply add a constant to %, and would have
no effect on the slope coefficients in any of the regressions reported in this section, so we have always used the simpler
expression given in the text,

7 For most weeks, ; is just 100(f; — f1—1), where f; = In(F;) is the log of the price of the nearest contract, In other
words, ; is the percent change in price of the near contract. In the case when the near contract as of date ¢ — 1 had
expired as of date £, we took r, to be 100 times the change between f; and the log of the price of that same contract as
of t — 1 (at which date it was the second available contract).
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rows of each block in Table 1 report OLS coefficient estimates and standard errors for the
regression

(13) rr =0 + ¢t + o (Fem1 — Xi—2) + €21

The coefficients on the change in index notional positions turn out to be statistically significant
at the 5% level for cotton and almost statistically significant for sugar. However, the coefficients
are of opposite signs, and neither ¢ nor # is statistically significantly different from zero for any
of the other 10 commodities. We again conclude that there appears to be very little indication
in the data that changes in posmons of 1ndex traders can help explain risk premia in commodity
futures prices.

Singleton (2014) has recently suggested that investment flows may matter over longer pe-
riods than a week and instead bases his analysis of crude oil futures returns on the change
in notional positions over a three-month period. The fifth and sixth rows of each block in
Table 1 report coefficient estimates and standard errors for our 12 agricultural commodities in
which the predictive variable is the lagged 13-week change in the commodity index notional
position:

(14) re =03+ ¢ari1 + m3(Fro1 — Fr—14) + 3.

None of the 24 estimated slope coefficients is statistically distinguishable from zero. To summa-
rize, we find no persuasive evidence that either the level, weekly change, or 13-week change in
index-trader positions is related to the risk premium in agricultural commodities.

Finally, we report some simple evidence that is robust with respect to any problems in
measuring the volume of index buying itself and makes use of higher-frequency features of the
data. The two main indices that buyers seek to track are the S&P-Goldman Sachs Commodity
Index and the Dow Jones—UBS Commodity Index. Each of these has a defined calendar schedule
at which a near contract is sold and the next contract is purchased. The Goldman strategy begins
the roll into the next contract on the 5th business day of the month and is completed on the 9th,
whereas the Dow Jones strategy begins the roll on the 6th and ends on the 10th. It is simple
enough to ask whether there is anything special about price movements on these particular
days.

We calculated the daily return on the near contract r, = 100(f, — f,—1), where 7 now indices
business days, and estimated the OLS regression

(15) Fr = 4 + m4S; + 84¢.

Here S; =1 if both (i) t is the 5th through the 10th business day of the month and (ii) the
Goldman and/or Dow Jones strategies would be selling the near contract during that period;
otherwise, S; = 0. In the case of crude oil, for which a new contract exists every month, S,
is a simple calendar dummy tracking the 5th through 10th business days of the month. For
all other commodities, some months are not traded; for example, there is no February con-
tract in soybeans. Thus as of the beginning of January, the near soybean contract would be
the March contract. The index funds would not be selling their soybean position during Jan-
uary, so S; would remain zero for soybeans throughout the month of January. Note that the
OLS estimate 7,4 is thus numerically equal to the difference between the average daily re-
turn from a long position on the near contract that is sold on days when the index funds are
selling that contract compared to the return on the near contract on nonroll days. Moreover,
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TABLE 2
AVERAGE RETURNS DURING INDEX-FUND ROLL VERSUS NORMAL TIMES

1st Contract 2nd Contract Spread
Constant St Constant Sy Constant S:

Beans 0.0195 0.3710%* -0.0015 0.3720% —0.0211 0.0010
(0.0523) (0.1514) (0.0481) (0.1393) (0.0178) (0.0515)

Wheat —0.0069 -0.0619 —0.0116 —0.0861 —0.0046 —0.0242
(0.0701) (0.2030) (0.0664) (0.1922) (0.0113) (0.0328)

Corn 0.0164 '0.0509 0.0112 0.0550 -0.0052 0.0041
(0.0626) (0.1812) (0.0602) (0.1741) (0.0118) (0.0343)
Bean Oil 0.0131 0.2267 0.0060 0.1851 —0.0071 -0.0415%
o (0.0481) (0.1391) (0.0473) (0.1368) (0.0059) (0.0172)

Cattle 0.0260 —0.0574 —0.0111 —0.0445 —0.0371* 0.0129
(0.0268) (0.0713) (0.0259) {0.0688) (0.0127) (0.0337)

Cocoa 0.0043 0.0958 '0.0056 0.0406 0.0013 —0.0552
(0.0566) (0.1634) (0.0538) (0.1554) (0.0159) (0.0458)

Coffee 0.0339 —0.0663 0.0184 —0.0529 —0.0155% 0.0133
(0.0522) (0.1507) (0.0508) (0.1469) (0.0057) (0.0164)
Cotton —0.0035 0.0731 0.0227 —0.0987 0.0249 —0.1920*
(0.0579) (0.1882) (0.0526) (0.1706) (0.0225) (0.0728)

Fed Cattle 0.0146 —0.0646 0.0166 -0.0761 0.0019 -0.0115
(0.0230) (0.0526) (0.0264) (0.0605) (0.0114) (0.0261)
Hogs —0.0542 0.0896 —0.0752 0.2428* ~0.0210 0.1532%
(0.0385) (0.0943) (0.0411) (0.1006) (0.0256) (0.0627)

KC Wheat 0.0135 —0.0748 0.0086 —0.0924 —0.0049 -0.0176
(0.0624) (0.1808) (0.0601) (0.1741) (0.0115) (0.0334)

Sugar —0.0309 0.4393 —0.0255 0.3293 0.0053 -0.1099
(0.0691) (0.2242) (0.0624) (0.2026) (0.0175) (0.0570)

Oil 0.0282 —0.1863 0.0127 ~0.1425 —0.0155 0.0438
(0.0808) (0.1509) (0.0749) (0.1400) (0.0213) (0.0399)

Nores: Coefficient estimates (standard errors in parentheses) from OLS estimation of (15) using daily data from April
11, 2006, to December 30, 2011. *indicates significant at 5% level.

because the average return over six days is numerically identical to (1/6) times the six-day
return,

N
]\]—1 er—{—n = (100/N)(ft+N _fr)’

n=1

one can equivalently interpret regression (15) as indicating the average result if one buys the
near contract on the day before the index funds begin to sell and sells on the day when the funds
are finished selling their positions. )

Columns 1 and 2 of Table 2 report coefficient estimates and standard errors for (15) fit to daily
returns on the near contract for the commodities we analyze. We find a statistically significantly
value for #4 for only 1 of the 12 agricultural commodities (soybeans), and this is of the opposite
sign predicted by the simple price impact hypothesis—if index-fund selling is depressing the
price on roll days, one would expect the price of the near contract to fall rather than rise on
those days.

Columns 3 and 4 of Table 2 report results for the analogous regressions using the next
contract, Here only two of the estimated coefficients (namely, those for soybeans and hogs) are
statistically significantly different from zero. And although these are of the predicted sign (a
positive coefficient consistent with the claim that index buying of the next contract is pushing
the price of the contract up), note that for beans a statistically significant positive coefficient was
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TasLE 3
AVERAGE RETURNS DURING 10-DAY WINDOW AROUND INDEX ROLL VERSUS NORMAL TIMES

1st Contract 2nd Contract Spread
Constant St Constant Sy Constant Sy
Beans 0.0201 0.2220 —0.0009 0.2218 —0.0209 —0.0001
(0.0548) (0.1235) (0.0504) (0.1136) (0.0186) (0.0420)
Wheat —0.0394 0.1272 —~0.0440 0.1122 —0.0046 —0.0150
(0.0735) (0.1654) (0.0695) (0.1566) (0.0119) (0.0267)
Corn 0.0069 0.0794 —0.0015 0.0978 —0.0083 0.0184
(0.0656) (0.1477) (0.0630) (0.1419) (0.0124) (0.0279)
Bean Oil - 0.0109 0.1482 0.0035 0.1244 —0.0074 —0.0238
(0.0503) (0.1134) (0.0495) (0.1115) (0.0062) (0.0140)
Cattle 0.0335 —0.0660 —0.0061 —0.0477 —0.0396* 0.0182
(0.0284) (0.0585) (0.0274) (0.0565) . (0.0135) (0.0277)
Cocoa 0.0341 —0.0928 0.0338 -0.1179 -0.0003 -0,0251
(0.0592) (0.1332) (0.0563) (0.1266) . {0.0166) (0.0374)
Coffee 0.0093 0.0839 —0.0074 0.0981 —0.0167* 0.0142
0.0547) (0.1228) (0.0533) 0.1197) (0.0059) (0.0134)
Cotton —0.0121 0.0997 0.0194 ~0.0388 0.0303 —0.1504%
(0.0600) (0.1519) (0.0545) (0.1375) -(0.0233) (0.0587)
Fed Cattle 0.0242 —~0.0693 0.0305 —0.0902 0.0063 ~0.0208
(0.0250) (0.0444) (0.0287) (0.0511) (0.0124) (0.0220)
Hogs —0.0448 0.0198 —0.0663 0.1138 —0.0216 0.0941
(0.0414) (0.0785) (0.0442) (0.0839) (0.0276) (0.0522)
KC Wheat —0.0184 0.1164 —0.0211 0.0947 —0.0027 —0.0217
(0.0654) (0.1473) (0.0630) (0.1419) (0.0121) (0.0272)
Sugar 0.0081 0.0173 0.0059 —0.0015 —0.0021 —0.0188
(0.0716) (0.1812) (0.0647) (0.1637) (0.0182) (0.0460)
Oil 0.1334 —0.3333%* 0.1000 —0.2693% —0.0334 0.0641
(0.0941) (0.1364) (0.0873) (0.1266) (0.0249) (0.0361)

Nortes: Coefficient estimates (standard errors in parentheses) from OLS estimation of (15) using daily data from April
11,2006, to December 30, 2011. *indicates significant at 5% level.

found for both the near contract that funds are selling (column 2) as well as the next contract
that funds are buying (column 4).

Finally, in columns 5 and 6, we report results when the dependent variable is the return on
the next contract minus the return on the near. Here 74 can be interpreted as the average excess
returns for someone who is simultaneously buying the next contract and selling the near. For
soybean oil and cotton we find a statistically significant negative value for 74 and for hogs we
find a statistically significant positive value.

Aulerich et al. (2013) suggested that the roll period itself might be too narrow to capture all
the effects. In Table 3 we repeat the analysis in which S, = 1 if both (i) 7 is the 1st through the
10th business day of the month and (ii) the Goldman and/or Dow Jones strategies would be
selling the near contract during that period. For this specification, none of the coefficients on S;
are statistically significant for any of the individual agricultural contracts (columns 2 and 4 of
Table 3), and there is only one statistically significant difference between the coefficients on the
first two contracts (cotton in column 6).

Other studies have also looked for price patterns associated with the roll window and have
reported mixed results. Mou (2010) used a window beginning 5 to 10 days before the roll and
pooled across commodities to find statistically significant results. Bessembinder et al. (2012)
found price effects that were usually reversed within 15 minutes, whereas Stoll and Whaley
(2010) found little impact of the roll. Brunetti and Reiffen (2011) reported that higher index-
fund positions raised the return on the second versus the near contract during the roll periods,
whereas Aulerich et al. (2013) found the opposite effect.
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We conclude that for our sample period and data set, any effects associated with the roll
window are too small to show up in simple summary regressions. Our overall conclusion seems
to be a robust summary of this data set—changes in the futures positions of commodity-
index funds are not associated with significant changes in the expected returns for their
counterparties.

5. PREDICTING RETURNS FOR CRUDE OIL CONTRACTS

Although there appears to be limited relation between commodity index positions and agri-
cultural futures returns, Singleton (2014) reported that a number of interesting variables appear
to help predict returns on crude oil futures contracts. Our interest in this article is the strong
predictive power he found for a measure of holdings by index-fund traders in crude oil futures
contracts.

The CFTC does not report a weekly estimate of index-fund positions in crude oil.
Singleton’s approach was to use an idea suggested by Masters (2008). Masters claimed that
the vast majority of index-fund buyers were following one of two strategies, trying to track
either the S&P-Goldman Sachs Commodity Index or the Dow Jones-UBS (formerly Dow
Jones—AIG) Commodity Index. Each of these would take positions in a particular set of com-
modities and roll them over according to a prespecified calendar schedule. Let X, be the
notional value of contracts in agricultural commodity i reported by SCOT to have been held
by index-fund traders on date ¢, that is, X; = X;FQ; for X; being the number of contracts
held by index-fund traders, F the futures price, and Q; the number of units of the commodity
held by a single contract.® Suppose we assume that this is composed entlrely of either traders
following the Goldman strategy, whose notional holdings we denote by x¢ i »or traders following
the Dow Jones strategy (X2):

X,’{ — XICI; +XII[).

Masters (2008) noted that whereas the Dow Jones index holds soybean oil, the Goldman index
does not, in which case

T D
X bean_oilt = X bean.oil,t*

We further know that the total notional exposure X? of funds replicating the Dow Jones index
would be allocated across the commodities accordlng to known weights 82, so that X2 = sP XP.
Hence one could use the SCOT bean oil figures to infer the total notlonal holdmgs of Dow J ones
investors, XP = Xpean_oils /(SbDean_Oﬂ.,, and from this impute holdings of Dow Jones investors in
crude oil contracts on the basis of SCOT reported holdings of soybean oil:

2-D,[bean_oil] . D
X crudeoilr = 52 crude._oil, tX bean_oil,t / ‘Sbean-oil,t'

We have added the superscript [bean_oil] to this estimate of crude oil notional holdings to
clarify that the underlying SCOT data from which it is derived in fact describe soybean oil
holdings rather than crude oil. Similarly, the Goldman index holds Kansas City wheat whereas
Dow Jones does not, giving an estimate of Goldman holdings of crude oil contracts’:

G,[KC_wheat] G
(16) X crude_oil, = 8 crude.oil, tX KC.wheat,t / (SKC_wheat,t‘

8 Note that this is a slight change in notation from the previous sections, where we instead measured Xy asjust XpFy.
As noted in Footnote 5, the slope coefficients in the previous section would be numerically identical regardless of which
convention is used, but the added term Q; needs to be included for the Masters-type calculations used in this section.

9 We thank Dow Jones for providing us with historical values for the weights 57

10 We thank Standard & Poor’s for providing us with historical values for Si(,;.
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FiGure 1

PRICE OF NEAR CRUDE OIL CONTRACT (LEFT SCALE) AND NUMBER OF CRUDE OIL CONTRACTS HELD BY INDEX TRADERS AS
IMPUTED BY MASTERS’ METHOD (RIGHT SCALE)

The Goldman index also holds feeder cattle, which Dow Jones does not, affording an alternative
estimate

17 XG’ [feeder_cattle] __ 5@

7 G
crude_oil,? crude_oil,tX feeder.cattle,t /d feeder.cattle,f*

Masters proposed to use the average of (16) and (17) as an estimate of Goldman crude oil
contract holdings. The sum of the oil holdings imputed to these two funds is then his estimate
of total index-fund holdings of crude oil contracts:

(18) X[Masters] _ XD,[bean_oil] + (1 /2) ( XG,[KC_wheat] + X-G,[feeder-cattle]) ‘

crude.oil,r — crude.oil,f crude_oil ¢ crude_oil, s

Figure 1 plots the number of contracts associated with this value for X %zsetc;fl], against the
price of crude oil based on the near contract, updating similar figures in Masters (2008) and
Singleton (2014). The figure suggests a strong connection between these two series, particularly
during 2008 and 2009.

We repeated our basic regressions (12)—(14) for , now the weekly return on the near crude oil

futures contract and ¥, = 100In X gmseteéfll .- These results are reported in the first block of Table 4.

Both the levels and weekly difference regression results are similar to those for agricultural

commodities, with negative values for R and statistically insignificant coefficients.

We also find using daily data (last rows of Table 2) no evidence of excess returns from buying
the near or next crude oil contract during the period in which many index traders are rolling
contracts, We do find statistically significant coefficients when a 10-day window is used (last
rows of Table 3), though the fact that there is the same negative coefficient on the first and
second contracts is again inconsistent with the claim that this correlation arises as a consequence
of index funds selling the near contract and buying the next.
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TABLE 4
TESTS FOR PREDICTABILITY OF CRUDE OIL RETURNS

Const -1 X1 R?
Qil: Masters
Level —5.4784 —0.0314 0.0030 -0.0052
(11.1640) (0.0585) (0.0063)
1-week diff —-0.0760 0.1006 —0,1340 —0.0004
(0.3132) (0.1157) (0.1045)
13-week diff —0.2298 -0.1171 0.0440* 0.0438
(0.3064) (0.0609) (0.0112)
Oil: Regression
Level —4.4562 —0.0306 0.0025 ~0.0057
(14.9609) (0.0587) (0.0085)
1-week diff -0.1147 —0.0472 0.0191 —-0.0057
(0.3128) (0.0969) (0.0770)
13-week diff —0.1337 —0.1240% 0.0448* 0.0499
(0.3040) (0.0609) (0.0107)

Nortes: OLS coefficients (with standard errors in parentheses) for regressions (12), (13), and (14). Masters block uses
% = 1001n(¥ [Mmersl) from Equation (18) and X,_; = ¥4 for the level rows, X;_1 = (%1 — ¥—2) for the one-week

crude_oil,¢
diff rows, and X;—1 = (¥—1 — ¥—14) for the 13-week diff rows. Regression block uses ¥ = 100 lll(XE?ﬂ]ie_oiM) from

Equation (21). All regressions are estimated from April 11, 2006, to January 3, 2012. *indicates significant at 5% level.

In contrast to the broad lack of evidence of an effect of commodity-index investing based
on the tests reported so far, the last row of the first block of Table 4 reproduces Single-

ton’s finding that the 13-week change in X Lmséeéfl]t appears to be quite helpful for predicting
changes in crude oil futures prices. Since the use of a 13-week window appears to increase the
variable’s predictive power for oil returns but not for any of the other 12 commodities, we were

curious to look at the performance of the oil regression across all possible window choices:
Fe = 0y + Gulr-1 + ”n(jct—l - Xt—l—-n) + .

Figure 2 plots the adjusted R? for each possible choice of n between 1 and 26. The biggest R
turns out to be obtained by setting n = 12, close to the value n = 13 proposed by Singleton.

) . oy . & [Masters
Irwin and Sanders (2012) have recently raised several strong criticisms of using X Eru?feegfg ,asa

measure of index-fund positions in crude oil futures. Irwin and Sanders noted first that although

for some dates the two measures X f;';f}fe‘f(;;f;“‘] and X fj;}jjiﬂ;ﬁ‘;—"a"‘e] are reasonably close, for other
dates they can differ greatly. In terms of this concern, we would point out that in fact there is
no need to restrict the inference as Masters did only to commodities that appear in one of the

indices but not the other. Note that the central claim is that

(19) Xy =060X%° +8PXP,

where X, 6,?, and 8{,) are all observed directly. Given any two arbitrary agricultural commodities
i and j, one can use the two equations in (19) to solve for the implied total holdings of the two

indices, X¥ and XP. Hence for any two arbitrary agricultural commodities  and j there exists
a Masters-type estimate of crude oil holdings:

G ot .
(20) KT i = [ decity Soudewoils ] o O i
crude_oil crude_oil,t crude_oil ¢ 5(;" 313 X], .
] ]

To illustrate the variability of such measures, we calculated (20), where j = soybean oil (one
of the series used by Masters and Singleton) and i corresponding to any one of the other 11
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possible choices. Plots of X E'ml;?‘;f jl] for different i are plotted in Figure 3. These series indeed

appear to be fairly sensitive to the choice of i.

One way to deal with this issue is to generalize Masters’ averaging idea. There’s no reason in
fact not to use all 12 agricultural commodities together, choosing X& and XP so as to minimize
the sum of squared discrepancies in predicting the SCOT reported value for X; across the 12
commodities. This amounts to treating the collection of Equations (19) fori =1, ..., 12 and for
a given ¢ as a sample of size 12 in which the dependent variable is X, and explanatory variables
are 87 and 80

e XM =16 52

crude.oil,t — crude.oilt “crude.oil,t

12 /oG 12 -1 12 %
] [ It € L Byl 835?} |:Zi=1 SEXitj'
12 12 12 % ’
Zi:l 8D5G j=1 (81? 2 Z[:l 8§Xit

it it
These regression-based estimates of index-fund holdings are also plotted in Figure 3.
We repeated our predictive regressions using X E:g}je_oil,, in place of X' Exgzt:f], in the second

block of Table 4. The results turn out to be quite similar to those based on Masters’ original
. e =2 . . e
series. Nothing is significant and R~ are negative for the levels or first-difference specifications,

but there is significant predictability from the 13-week change in X Etﬂje_oﬂ‘,. Interestingly, we
found the same is true for every one of the bivariate estimates plotted in Figure 3: the 13-week
change in crude oil index-trader positions, inferred from soybean oil and any other arbitrary
agricultural commodity, appear to help predict crude oil returns.

A second concern that Irwin and Sanders (2012) raised about Masters’ methodology is that
the index oil holdings as imputed from agricultural commodity positions are quite different
from direct estimates of crude oil positions that the CFTC reports in its new Index Investment
Data report. Unfortunately, the Index Investment Data report is only available at a quarterly
frequency and for a shorter period than SCOT, so is not usable for the kind of regressions we are

interested in here. However, it is puzzling that agricultural positions cannot predict agricultural
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Notes: Number of oil contracts held by index funds as imputed using Masters’ method (Equation (18)), regres-
sion method (Equation (21)), and bivariate inferences using soybean oil and one other commodity as specified in
Equation (20).

FiGure 3

HOLDINGS OF CRUDE OIL CONTRACTS HELD BY COMMODITY INDEX TRADERS IMPUTED BY ALTERNATIVE METHODS

prices but do predict crude oil prices and that a direct measure of crude oil index holding would
do a poorer job at predicting oil prices than does an index imputed from agricultural holdings.

One way to shed further light on these issues is to investigate whether the in-sample success
of the oil regression (14) translates into useful out-of-sample forecasts. Since the time when
Singleton’s paper was first circulated we have obtained an additional two years of data, which
allow us to see whether the 13-week change has predictive power outside of the sample for
which it was originally proposed. We estimated regression (14) for a sample ending January 12,
2010, which was the end date for Singleton’s analysis. If we use those coefficients to predict oil
returns over January 17, 2010, through January 3, 2012, the out-of-sample mean squared error
(MSE) is 24.01. That compares with an out-of-sample MSE of 21.97 if we had instead simply
always forecast 7, = 0 (see the first row of Table 5).

Note that the above calculations represent a true out-of-sample evaluation, namely, a calcula-
tion of how well a proposed empirical relation describes data that came in after the initial study
has been released. It is in this sense a more meaningful exercise than the pseudo-out-of-sample
evaluations that are popularly reported. Hansen and Timmermann (2013) demonstrate that the
popular practice of calculating an “out-of-sample” MSE of a set of recursive regressions that
end at all points between some sample dates Ty and T is asymptotically equivalent to looking
at the difference between two simple Wald tests, the first statistic using just the subsample of
observations from 1 to Ty and the second statistic using all data from 1 to 7. If our goal is to
evaluate whether a variable belongs in a forecasting relation or to test whether the regression
relation is stable, there are a number of alternative tests that are much more appropriate than
these artificial “out-of-sample” forecast evaluation exercises. For example, making efficient use
of the full sample of data from April 11, 2006, to January 3, 2012, the Bai and Perron (1998) test
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TABLE 5
IN-SAMPLE AND POST-SAMPLE PREDICTABILITY OF CRUDE OIL AND STOCK MARKET RETURNS

In-Sample Post-Sample MSE
Const Fi—1 X1 R? Regression Random Walk
Qil —0.4858 ~0.1507* 0.0553* 0.0834 24.0113 21.9747
(0.3968) (0.0755) (0.0124)
S&P500 —0.1332 —0.0637 0.0125% 0.0130 6.5520 6.3688
(0.205%9) (0.0724) (0.0060)
Nortes: In-sample: OLS coefficients (standard errors in parentheses) for regression (14) as estimated over April 11,
2006, to January 12, 2010, with X;..; = (%~1 — %.14) for ¥ = 100 In(X’ [X;;tcﬁ]l ) Oil regression uses weekly percentage

change in near crude oil contract for # and r,_1. S&P500 uses percentage change in S&P500 for #, and r—1. Post-
sample MSE for 1eglession reports mean squared error over January 17, 2010, to January 3, 2012, using the historically
estimated regression. Post-sample MSE for random walk reports the average squared value of r; over January 17,2010,
to January 3, 2012, *indicates significant at 5% level, v

leads to the conclusion that there are two structural breaks'! in the oil return regression (14)
dated at September 30, 2008, and January 13, 2009—both inside the original Singleton sample
of data. The coefficient on ¥,_1 — %14 is positive over the 2006-2008 subsample, as it was found
to be in Singleton’s regressions and in our regressions using the full sample of observations from
2006 to 2012 as well as the 2006-2010 regression in row 1 of Table 5. However, when estimated
with the two indicated break points, the coefficient turns out to be negative over both the second
and third subsamples, with a ¢ statistic of —0.75 for data from January 30, 2009, through January
3, 2012. The correlation identified by Singleton thus has no success at describing data since
his paper was written and indeed seems not to have captured a stable predictive relation even
within the sample that he analyzed.

Returning to Figure 1, the striking feature of the Masters indicator is that it collapses as
the recession worsened in 2008 but began to rebound sharply before the recovery began,
key movements that precede equally dramatic parallel moves in oil prices. The close fit over
Singleton’s original sample period thus seems to result from the broad comovement of the
series during the first phase of the Great Recession. It is interesting to note that if we replace
r, in expression (14) with the weekly return on the U.S. S&P500 stock price index, but with

the second explanatory variable still 100[In XE:fjf;";f} =X gﬁzsée;f]],_l 4], for a sample that ends
at Singleton’s January 2010 endpoint, the Masters variable would also appear to be positive
and statistically significant (see the last rows of Table 5). In other words, if we used only data
from the recession, we would conclude that index-trader positions in soybean oil, Kansas City
wheat, and feeder cattle could also be used to predict stock prices. Once again, however, a
relation estimated over this period has a bigger out-of-sample MSE than the simple no-change

forecast.12

6. CONCLUSION

The increased participation by financial investors in commodity futures markets over the last
decade has been quite substantial. In principle this could have influenced the risk premium,

1 This is based on evaluation of the sequential F test in Bai and Perron (1998), table II, imposing the restriction
that breaks must be separated by at least 5% of the sample size (in this case, 15 observations) and that the maximum
number of breaks is m = 4. The identical conclusion of two structural breaks emerges from application of the Schwarz
(1978) criterion.

12 A referee notes that if % — %13 were indeed capturing the market pricing kernel, then according to the theory
sketched in Section 3 it should also help predict returns on all assets. To us a more natural reading of the above results
is that the magnitude never had any true ability to predict returns on oil contracts or any other asset, but instead is just
a constructed variable whose movements for a brief period turned out to be in the same direction as other important
market developments.




204 HAMILTON AND WU

and Hamilton and Wu (2014) found significant changes in the behavior of the risk premium on
oil futures contracts before and after 2005. In this article, we studied data since 2006 to look
for a systematic relation between the notional value of commodity futures contracts held on
behalf of index-fund investors and expected returns on futures contracts. We found essentially
no relation for the 12 agricultural commodities for which the CFTC reports such positions. We
reviewed evidence that positions in crude oil contracts imputed from the reported agricultural
holdings could help predict crude oil futures returns and noted that the methodology for such
imputation could be generalized to make use of all the available data. We confirmed that these
imputed holdings appear to help predict crude oil returns over 2006-2009, though this is closely
related to the dynamics of index investing during the Great Recession, and indeed the same
imputed holdings also appear to predict stock returns over that period. We found, however,
that both relations broke down when trying to describe the data since 2009,

Our overall conclusion is thus consistent with most of the previous literature—there seems
to be little evidence that index-fund investing is exerting a measurable effect on commodity
futures prices. As noted in the Introduction, even if one could demonstrate an effect of index-
fund buying on commodity futures prices, it would be a separate challenge to explain how this
could also end up changing the equilibrium spot price. We conclude that it is difficult to find
much empirical foundation for a view that continues to have a significant impact on policy
decisions.
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1. Introduction

Volatile oil prices have been drawing a lot of attention in recent years, with Hamilton (2009) for
example suggesting that the oil price spike was a contributing factor in the recession of 2007-2009.
There has been considerable interest in whether there is any connection between this volatility and the
flow of dollars into commodity-index funds that take the long position in crude oil futures contracts.
Recent empirical investigations of a possible link include Kilian and Murphy (2013), Tang and Xiong
(2012), Buyuksahin and Robe (2011), Alquist and Gervais (2011), Mou (2010), Singleton (2011), Irwin
and Sanders {2012), and Fattouh et al, (2013).

A separate question is the theoretical mechanism by which such an effect could arise in the first
place. Keynes (1930) theory of normal backwardation proposed that if producers of the physical
commodity want to hedge their price risk by selling futures contracts, then the arbitrageurs who take
the other side of the contract may be compensated for assuming that risk in the form of a futures price
below the expected future spot price, Empirical support for this view has come from Carter et al. (1983),
Chang (1985), and De Roon et al. (2000), who interpreted the compensation as arising from the
nondiversifiable component of commodity price risk, and from Bessembinder (1992), Etula (2013) and
Acharya et al, (2013), who attributed the effect to capital limitations of potential arbitrageurs. In the
modern era, buying pressure from commodity-index funds could exert a similar effect in the opposite
direction, shifting the receipt of the risk premium from the long side to the short side of the contract.

In this paper we show that if arbitrageurs care about the mean and variance of their futures
portfolio, then hedging pressure from commodity producers or index-fund investors can give rise to an
affine factor structure to commodity futures prices, We do so by extending the models in Vayanos and
Vila (2009) and Hamilton and Wu (2012a), which were originally used to describe how bond supplies
affect relative yields, but are adapted in the current context to summarize how hedging demand would
influence commodity futures prices. The result turns out to provide a motivation for specifications
similar to the class of Gaussian affine term structure models originally developed by Vasicek (1977),
Duffie and Kan (1996), Dai and Singleton (2002), Duffee (2002), and Ang and Piazzesi (2003) to
characterize the relation between yields on bonds of different maturities. Related affine models have
also been used to describe commodity futures prices by Schwartz (1997), Schwartz and Smith (2000),
and Casassus and Collin-Dufresne (2006), among others,

In addition, this paper offers a number of methodological advances for use of this class of models to
study commodity futures prices, First, we develop the basic relations directly for discrete-time ob-
servations, extending the contributions of Ang and Piazzesi (2003) to the setting of commodity futures
prices. This allows a much more transparent mapping between model parameters and properties of
observable OLS regressions. Second, we show how parameter estimates can be obtained directly from
unbalanced data in which the remaining duration of observed contracts changes with each new
observation, developing an alternative to the Kalman filter methodology used for this purpose by
Cortazar and Naranjo {2006), Third, we show how the estimation method of Hamilton and Wu (2012h)
provides diagnostic tools to reveal exactly where the model succeeds and where it fails to match the
observed data.

We apply these methods to prices of crude oil futures contracts over 1990-2011, We document
significant changes in risk premia in 2005 as the volume of futures trading began to grow significantly.
While traders taking the long position in near contracts earned a positive return on average prior to
2005, that premium decreased substantially after 2005, becoming negative when the slope of the
futures curve was high. This observation is consistent with the claim that historically commercial
producers paid a premium to arbitrageurs for the privilege of hedging price risk, but in more recent
periods financial investors have become natural counterparties for commercial hedgers. We also un-
cover seasonal variation of risk premia over the month, with changes as the nearest contract ap-
proaches expiry that cannot be explained from a shortening duration alone.

The plan of the paper is as follows. Section 2 develops the model, and Section 3 describes our
approach to empirical estimation of parameters. Section 4 presents results for our baseline specifi-
cation, while Section 5 presents results for a model allowing for more general variation as contracts
near expiration. Conclusions are offered in Section 6.
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2. Model
2.1. Role of arbitrageurs

Consider the incentives for a rational investor to become the counterparty to a commercial hedger or
mechanical index-fund trader, We will refer to this rational investor as an arbitrageur, so named because
the arbitrageur's participation guarantees that risk is priced consistently across all assets and futures
contracts in equilibrium. Let Fyr denote the price of oil associated with an n-period futures contract
entered into at date ¢, Let z,; denote the arbitrageur’s notional exposure (with z;: > 0 denoting a long
position and z,; < 0 for short), so that zy;/Fy is the number of barrels purchased with n-period con-
tracts. Following Duffie (1992, p. 39), we interpret a long position entered into at date ¢ and closed at
datet + 1asassociated with a cash flow of zero atdate tand F,_y r.1 — Fne atdate ¢ + 1. The arbitrageur’s
cash flow for period ¢ + 1 associated with the contemplated position zp; is then zue (Fy_¢ 11 — Fae)/Fne.
We assume the arbitrageur also takes positions g;; in a set of other assetsj = 0, 1...,] with gross returns
between tand ¢ + 1 denoted exp(r;,.1) (so that the net return is approximately rj ., 1) and where ro . ¢ is
assumed to be a risk-free yield. Then the arbitrageur’s total wealth at ¢ + 1 will be

J N F ~F

-1,t+1

W[_H = qut eXp(rij_]) + Z Znt - ’t;:nt nt' (])
j=0 n=1

The arbitrageur is assumed to choose {qqy, ..., Gjt, Z1¢, ..., Znt} SO as to maximize'

Et(Wey1) — (v/2)Vare(Weiq) (2)
subject to Zf:oqjt = W,

We posit the existence of a vector of factors x; that jointly determine all returns, which we assume
follows a Gaussian vector autoregression (VAR)%:
Xep1 = €+ pXp + Sy Up~idd N(O, Iy). (3)
Log commodity prices and returns are assumed to be affine functions of these factors

fat = log Far = an+Bpxe n=1,...,N (4)

ne=g+vxe j=1,..0

Using a similar approximation to that in Hamilton and Wu (2012a), we show in Appendix A that under
these assumptions,

J
E(Wi1)= qor(1+Toe41) + D it {1 +& + Yjlc+ pxo) + (1/2)%{22'%]

; = (5)
+ Z Znt [an—l + 5;1_] (4 pxe) —an — ﬁ;xt + (1/2)5;1_122/511—1]
n=1
J , N . J N
VardWeen)= | D GV + D 2oy | 22| D aqe¥y+ D Zeebeor |- (6)
j=1 n=1 j=1 =1

' It is trivial to extend this to adding positions in futures contracts for a number of alternative commodities. We discuss here
the case of the single commodity oil for notational simplicity.

% The assumption of Gaussian homoskedastic errors greatly simplifies the estimation because it implies that parameters of
the reduced-form representation of the model can be optimally estimated using simple OLS. For an extension of this approach

to the case of non-Gaussian factors with time-varying variances, see Creal and Wu (2013),
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The first-order conditions for the arbitrageur’s positions satisfy

BVet) — 1y g0+ (ry2) D) g
aqje ' od;t

OE(Wri1) avar (Wep)

il ARALS 4 ¥y, HN————"7% n=1,..,N.
zne (1/2) 0zn¢

Under (5) and (6) these become
&+ V(e +oxe) + (1/2j23Y) = ro1 + Ve

Gt + By (C+ pXe) — @ = BXe + (1/2)0,_1 25 ny = Byihe )

for

J N
A = 2% (Z DY Zﬂtﬁsz~1> : (8)
= =1

Suppose we conjecture that in equilibrium the positions gj;, zy¢ selected by arbitrageurs are themselves
affine functions of the vector of factors, so that

A = A4Axy. » 9)

Then (7) requires

B = Bn1p = Byg A (10)

Op = Op_1+ 5;1_1C+ (1/2)6;_1221@14 - 5;1_1)\- (11)

From (5), the left side of (7) is the approximate expected return to a $1 long position in an n-period
contract entered at date t. Equation (7) thus characterizes equilibrium expected returns in terms of the
price of risk A

E[(Fn—l,tﬂ —Fnt> zﬂ;,_ﬂb (.12)
Fut
In the special case of risk-neutral arbitrageurs (y = 0), from (8) wewould have A = 0and A = 0in(9).
Note that this framework allows for all kinds of factors (as embodied in the unobserved values of x;)
to influence commodity futures prices through Equation (4), including interest rates, fundamentals
affecting supply and demand, and factors that might influence risk premia in other asset markets, If we
consider physical inventory as another possible asset g;, this may help offset the risks associated with
futures positions zy as described in Equation (8) and could also be an element of the hypothesized
factor vector x;. We will demonstrate below that it is not necessary to have direct observations on the
factor vector x; itself in order to make use of the model’s primary empirical implications (10) and (11),
Instead, these restrictions can be represented solely in terms of implications for the dynamic behavior
of the prices of different commodity-futures contracts that have to hold as a result of the factor
structure itself and the behavior of the arbitrageurs. Moreover, we will see that it is possible to estimate
the risk-pricing parameters A and A solely on the basis of any predictabilities in the returns from
positions in commodity-futures contracts.’

3 Alternatively, one can try to make use of direct observations on the positions of commodity index-fund investors as we do
in Hamilton and Wu (2012¢), '
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The recursions (10) and (11) can equivalently be viewed as the equilibrium conditions that would
result if risk-neutral arbitrageurs were to regard the factor dynamics as being governed not by (3) but
instead by

Xerr = €@+ px; + Sud (13)
Q@ =c-2 (14)
P =p—A (15)
U AN, ).

The recursions (10} and (11) that characterize the relation between the prices of futures contracts of
different maturities will be recognized as similar to those that have been developed in the affine term
structure literature? to characterize the relations that should hold in equilibrium between the interest
rates on assets of different maturities. In addition to providing a derivation of how these relations can
be obtained in the case of commodity futures contracts, the derivation above demonstrates how
commercial hedging or commodity-index funds might be expected to influence commodity futures
prices, An increase in the demand for long positions in contract n will require in equilibrium a price
process in which arbitrageurs are persuaded to take a corresponding short position in exactly that
amount. A larger absolute value of z,; in turn will expose arbitrageurs to different levels of risk which
would change the equilibrium compensation to risk 4; according to equation (8). Again, from (8) and
(9), these index traders could be responding through an affine function to interest rates or other
economic fundamentals, What matters is that this behavior causes the net risk exposure of arbitrageurs
A¢ to be an affine function of the factors in equilibrium, In the following subsection we illustrate this
potential effect using a simple example,

2.2, Example of the potential role of index-fund traders

Suppose there are some investors who always want to have a long position in the 2-period contract,
regardless of anything happening to fundamentals, At the start of each new period, these investors close
out their previous position (which is now a 1-period contract) and replace it with a new long position in
what is now the current 2-period contract.” Let the scalar K; denote the notional value of 2-period
contracts that investors want to buy in period ¢, and suppose this evolves exogenously according to

Ke = &+ p¥Kp_q + =Kuf. : (16)

If investors and arbitrageurs are the only participants in the market, then equilibrium futures prices
must be such as to persuade arbitrageurs to take the opposite side of the investors. Thus arbitrageurs
are always short the two-period contract, close that position when it becomes a 1-period contract, take
the short side of the new 2-period contract, and have zero net exposure to any other contract in
equilibrium. In other words, the process for {fnt}ﬁ:g must be such that (7) and (8) are satisfied with

4 Qur recursions (10) and (11) are essentially the same as Equation (17) in Ang and Piazzesi (2003), with the important
difference being that their recursion for the intercept adds a term dp for each n, corresponding to the interest earned each
period. No such term appears in our expression because there is no initial capital invested. Another minor notational difference
is that our A corresponds to their £3; while our A corresponds to their £4,. An advantage of our notation in the current setting
is that our A is then measured in the same units as x; and is immediately interpreted as the direct adjustment to ¢ and p that
results from risk aversion by arbitrageurs,

5 In the case of crude oil contracts, what typically happens is that the commodity-index fund takes a long position from a
swap dealer which in turn hedges its exposure by taking a long position in an organized exchange contract. We view the swap
fund in such an arrangement as simply an intermediary, with the ultimate demand for the long position (K;) coming from the
commodity-index fund and the index-fund's ultimate counterparty being the short on the organized exchange contract (z3).
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2o — -Ki forn=2
"= 0 otherwise’

Suppose that arbitrageurs’ only risk exposure comes from commodities (g = 0 forj = 1,...,]). Then
from (8), in equilibrium we will have

A = —y23/'f1K;. (17)
Suppose that the spot price depends solely on a scalar “fundamentals” factor x;:
Jor = % (18)

Xp = C R 3

We conjecture that in equilibrium, the factor x; governing futures prices includes both fundamentals
and the level of index-fund investment, x; = (3, K¢, with (18) implying 8o = (1,0) and the factor
evolving according to

Xt = CH pXp_1 + 2Ur

or written out explicitly,

x| _Ic¢ e 0], > 01y
[KJ = [CI(]+{O p’<H1<’t,1 tlo sK|uk]

We can then recognize {17) as a special case of (9) with
A=0

iy = [0 —722'61].

Hence

=[]0 v (19

By = Bon?

=[1 0]p°

= [ [ o]p]

o*
61 B “/P*(E*)z . ‘ (20)

Assuming p* > 0 and K; > 0, the effect of index-fund buying of the 2-period contract is also to increase
the price of a 1-period contract. The reason is that the 2-period contract that the arbitrageurs are
currently being induced to short exposes the arbitrageurs to risk associated with uncertainty about the
value of x;, ;. The 1-period contract is also exposed to risk from x{, ;. If a 1-period contract purchased at ¢
provided zero expected return, arbitrageurs would want to go long the 1-period contract in order to
diversify their risk associated with being short the 2-period contract. But there is no counterparty who
wants to short the 1-period contract, so equilibrium requires a price f;; such that someone shorting the
1-period contract would also have a positive expected return, earned in the form of a higher price for fi;.
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Table 1
Weekly durations associated with monthly contracts at different points in time,
J k=0 =1 k=2
1 3 7 11
2 2 6 10
3 1 5 9
4 0 4 8

For specified week of the month j and months until the contract expires k, table entry indicates weeks n
remaining until expiry.

Substituting (20) into (19), we now know p? and can calculate §, = (p@)"8, for each n. Thus in-
vestment buying does not matter for fo; but does affect every f; for n > 0, through the same mech-
anism as operates on the 1-period contract, In particular, from (12),

F,_ - F n-2

E (—" e '”) = 1B (0%) =Bk,
nt

which in general has the opposite sign of K; for all n; someone would earn a positive expected return by

taking the short position in a contract of any duration,

2.3, Empirical implementation

There are two general strategies for empirical implementation of this framework. The first is to
malke direct use of data on the positions of different types of traders. Hamilton and Wu (2012¢) use this
approach to study agricultural futures prices. Unfortunately, the data publicly available on trader po-
sitions in crude oil futures contracts have some serious problems (see the discussion in Irwin and
Sanders (2012) and Hamilton and Wu (2012¢)). An alternative approach, which we adopt for pur-
poses of modeling crude oil futures prices in this paper, is to infer the factors x¢ based on the behavior of
the futures prices themselves, In this case, risk premia are identified from differences between
observed futures prices and a rational expectation of future prices. We will use the framework to
characterize the dynamic behavior of risk premia and their changes over time.

For purposes of empirical estimation we interpret t as describing weekly intervals, This allows us to
capture some key calendar regularities in the data without introducing an excessive number of pa-
rameters, NYMEX crude oil futures contracts expire on the third business day prior to the 25th calendar
day of the month prior to the month on which the contract is written. To preserve the important
calendar structure of the raw data, we divide the “month” leading up to a contract expiry into four
“weeks", defined as follows:

week 1 ends on the last business day of the previous calendar month
week 2 ends on the 5th business day of the current calendar month
week 3 ends on the 10th business day of the current calendar month
week 4 ends on the day when the near contract expires

Associated with any week ¢ is an indicator jre {1,2, 3,4} of where in the month week ¢ falls,

Our estimation uses the nearest three contracts. If we interpret the price at expiry asann =0
week-ahead contract, the observation y; for week t would be characterized using the notation of
Section 2 as follows: (

(Bofofine) if e =1
(fzr,fsufw,t)l if jr=2
(Fofsoor) =3
(Foofarfor) i€ i =4

I

e
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Fig, 1, Data used in the analysis. Weekly observations (with specification of weeks as given in text), January 1990 to June 2011, Top
panel: first element of yy, (the average of the log prices of second and third contracts). Bottom panel: second element of yy, (the
difference between the log price of third and second contracts). '

Table T summarizes the relation between the weekly indicator (j), months until expiry is reached (k),
and weeks remaining until expiry (n). This feature that the maturity of observed contracts changes
with each observation t is one reason that much of the research with commodity futures contracts has
used monthly data, However, in our application a key interest is in the higher-frequency movements
and specific calendar effects, Fortunately, the framework developed in Section 2 gives us an exact
description of the likelihood function for the data as actually observed, as we now describe.

We will assume that there are two underlying factors (that is, x; is 2 x 1) Since (4) implies that each
element of the (3 x 1) vector y; could be written as an exact linear function of x;, the system as written is
stochastically singular - according to the model, the third element of y; should be given by an exact
linear combination of the first two, This issue also commonly arises in studies of the term structure of
interest rates, A standard approach in that literature® is to assume that some elements or linear com-
binations of y; differ from the magnitude predicted in (4) by a measurement or specification error, In the
results reported below, we assume that the k = 1 - and 2- month contracts are priced exactly as the
model predicts. It is helpful for purposes of interpreting parameter estimates to summarize the infor-
mation in these contracts in terms of the average level of the two prices, which we will associate with
the first factor in the system, and spread between them, which we will associate with the second factor;

Yie = Hiye

0 (1/2) (172)
Hy = . 21

0 -1 1

The two elements of y; are plotted in Fig. 1. )
We assume that the model correctly characterizes these two observed magnitudes. Since

vt = (facj, So-j»fi2—;,)s this implies that

6 See for example Chen and Scott (1993), Ang and Piazzesi (2003) and Jostin et al. (2011), The observable implications of this
assumption are explored in detail in Hamilton and Wu (2013},
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Yir = Avj + Byjxe (22)
g, ]
Ay, =Hy| @y, | for jr =1,2,3, or 4
@x1) s |
N
Bij, = Hi| Bgy | forji=1,23, or 4. (23)
(2x2)
| Pz, ]

We will use the notational convention that if jy = 1, then Ay, = Ana.
If By; is invertible, the dynamics of the observed vector yq, can be characterized by substituting (22)
into (3):
= Ay, +Byjc+Byjp|B7) 1= Ay, )|+ By, Zue
Yt i 1ji 13:P | B1j_ (Y161 1ot 12Ut
Since u; is independent of {y;.(,¥¢-2,...,¥o}, this means that the density of y;, conditional on all

previous observations is characterized by a VAR(1) with seasonally varying parameters:

Y1elVec1:Yi=2, Yo ~N<¢j, + @ y1e-1, Qj,) (24)

Qj[ = By J-,EE’B'] i

= -1
O, = BypBij,

¢, = Arj, +Byjc— BjAq .

Note that the predicted seasonal parameter variation arises from the fact that the number of weeks
remaining until expiry of the observed contracts changes with each new week.
We postulate that the nearest contract, which we write as

Yar = Hayt

Hy=1[1 0 0], (25)

differs from the value predicted by the framework by a measurement or specification error with mean
zero and variance "34',1
Yar = Ay, +BojXe + O e

[ ]
AZJ; = Hy g, for j = 1,2,3,4
(1x1) _0(12_1'I~
B,
By, = Ha| By, | for je = 1,2,3, or4.
)| gy
L Jr J
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If the measurement error ug is independent of past observations, this gives the conditional
distribution

Valie Vi1 Ve, ~-~v.V0~N('Yj, + Ly U§J,> (26)

T, = By J‘B;}‘ (27)

Vi = AZJ: - FjrAUz'
The density of y; conditional on its own past history is thus the product of (24) with (26), meaning

that the log likelihood for the full sample of observations (V'T,Y’T47-¢-,J"1)/ conditional on the initial
observation yq is given by

P =

T
[log g(yn; ¢, + Ppy1e-1s Qj,) +log g()’Zt? Y+ Ty 07 J-,] ' (28)
t=1

where g(y; 1, Q) denotes the multivariate Normal density with mean u and variance Q evaluated at the
point y.
3. Estimation
3.1. Unrestricted reduced form

The traditional approach to estimation of these kind of models would be to maximize the likelihood
function with respect to the unknown structural parameters. However, Hamilton and Wu (2012b)
demonstrate that there can be big benefits from using an estimator that turns out to be asymptoti-
cally equivalent to MLE but is derived from simple OLS regressions, To understand this estimator,
consider first how we would maximize the likelihood if we thought of ¢;, ®;, ©;, v}, I';, and g, in the

above representation as completely unrestricted parameters rather than the particular values implied
by the structural model presented above, From this perspective, the log likelihood (28) could be written

4 4
L(B1,P1, 91,71, 11,061,000, 04y @4, Qu, 74, T4, 004) = Z$1j<¢j7q’j,gj> +Z$2j(7j>rjvgej) (29)
j=1 =

T
ylj<¢j)®jygj) = ;50} :j)lOgg(Y1t§¢j+¢j)’1,t~1agj)

!
log g (y1ei ¢+ D1a-1,5) = —log 2m — (1/2)log| Y| - (1/2) (y1e — ¢y - D11 ) 7 (v — &y

- j)’1,r—1)

T
ij(ijFjaaej) = ;50} = j)103g<Y2t;’Yj+FjY1t,0§j>

(Y2t - Fj)’n)z
ZJgj

log g (vati ¥ + Ty, 04) = ~(1/2)log 21— (1/2)log 0%
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where for example 6(jr = 1) is 1 if t is in the first week of the month and is zero otherwise. It is clear
that the unconstrained likelihood function is in fact maximized by a series of OLS regressions. To es-
timate the parameters in block j, we collect all observations whose left-hand variable is in the jth week
of the month, and simply perform OLS regressions on what now looks like a monthly data set,
Specifically, to estimate (¢J, ;) for a particular j, we associate month t with an observed
monthly-frequency vector y] . deﬁned as follows. For illustration, consider j = 1 and suppose that ¢
corresponds to the month spanned by the last week of December and first 3 weeks of January. The
first element ofy1 1,dimonth(t)=Jan is the average of the log prices of the March and April contracts as of

the fast business day of December, The second element ofy] 1,jmonth(t)=Jan is based on the log price of

the April contract on the last day of December minus the log price of March contract. For j = 1 and
general 7,

t . f3,t(r)
Yige = Hi| frum

11,41

for Hy given in (21) and where ¢(7) denotes the week t associated with month 7. The explanatory
variables in these j = 1 block regressions consist of a constant, the average log prices of the February
and March contracts on the day in December when the January contract expired, and the spread be-
tween the March price and February price at the December expiry of the January contract:

T
e = [ Hy | fae

143

J{on; :} . (30)
(-1

Consider the estimates from OLS regression ofﬂ 1,00 xq 1o

P S Topow )
[451 ‘151] = (E:]ym,rxl,hr) <ZX1,1,1X1,1,T>
T=

=1

Q= T_T,é(y}wﬁ [51 qgl]th) (yh, - [51 @1] "“>l

where 7 denotes the number of months in the sample. These estimates maximize the log likelihood
(29) with respect to {¢1, ®1,0¢}

Forj = 2we reglessy‘; 2 (whose first element, for example, would be the average of the March and
April contracts as of the fifth business day in January) on x‘; 21 (e.g., a constant and the level and spread
as of the last day of December),

- () Bt

o~

B2 =773 (e (32 Bl Phae - [ BalMa)’

to obtain 52, 52, and ?32 Similar separate monthly regressions of the 1- and 2- moAnth prices in the
third or fourth week of each month on their values the week before produce {¢J, Qj}forj = 3ord.

Likewise, note that the components of Zj 1,/21(71, Tj, 0¢) take the form of reglessions in which the
residuals are uncorrelated across blocks, meaning full- mformation maximum likelihood estimates of y;
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and I'j are obtained by OLS regressions for individual j. For example, for j = 1 and t corresponding to
December-January, yZJT is the price of the February contract on the last day of December,

for Hy in (25) and explanatory variables the level and slope as of the last day of December:

XT B f3t €3]
210 7 | Hi | frem
Fiteco

The maximum likelihood estimates are given by

-1
[ ] <Zy2“2“><2x2“x2“> for j = 1,2,3,4

Gy =T1Y (y;i»f - [?i ff]"£a:r>2'

3.2. Structural estimation of the baseline model

Now consider estimation of the underlying structural parameters of the model plesented in Section
2, The key point to note is that the above OLS estimates {qﬁ] , (111 , 521 Y1, I“1 yTolyons q54, <1>4, 94,
Y4 F4, U4} are sufficient statistics for inference about these parameters - anything that the full sample
of data is able to tell us about the model parameters can be summarized by the values of these OLS
estimates, The idea behind the minimum-chi-square estimation proposed by Hamilton and Wu (2012b)
is to choose structural parameters that would imply reduced-form coefficients as close as possible to the
unrestricted estimates, an approach that turns out to be asymptotically equivalent to full MLE.

Note that the model developed here specifies observed prices in terms of an unobserved factor
vector X There is an arbitrary normalization in any such system, in that if we were to multiply x; by a
nonsingular matrix and add a constant, the result would be observationally equivalent in terms of the
implied likelihood for observed y;.” Since we have treated the factors x; as directly inferable from the
values of yq;, we normalize the factors so that they could be interpreted as the level and slope as of the
date of expiry of the near-term contract:

Xt = H]_)’[ for j[ = 4, (32)
Recalling (22), this would be the case if

Qo 36 ,

Hiye = Hyjag | +Hy |y | % for ji = 4. (33)
ag By

Substituting (32) into (33), our chosen normalization thus calls for

8o
+ Hy ﬁg X forjr =4
B

g
= H1 [47)
ag

7 For further discussion of identification and normalization, see Hamilton and Wu (2012h),
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-ﬁo.
/
ﬂl
LPg J

%o
H] Mg} = 0. (35)
L &8 |

Since

Jor g 8o
fae | = oa |+ | By |,
fat og Bg

our normalization could alternatively be described as x; = Hq(for, far,far)’ for all ¢. Following Joslin et al,
(2011) and Hamilton and Wu {2013), this can be implemented by defining £; and £, to be the eigen-
values of p¢ = p — A. Given this normalization and values for £1, 5, =, and &g, we can then determine
the values for p2, c?, and {8, an}’,;’:o; details are provided in Appendix B. These along with p, ¢, and o,
then provide everything we need to evaluate the likelihood function or to calculate what the predicted
values for any of the unrestricted reduced-form coefficients ought to be,

Let § denote the vector of unknown structural parameters, that is, the 16 elements of
{£1,62,%,00,,C,0p1,0¢2,0¢3, 04} for = lower triangular. Collect elements of the unrestricted OLS es-
timates in a vector 7:

o~ ~f  ~f o~ o~ /
T = (T, Bg, T, Ta)

o= ([ 3o B1TY
q = ([vedx(@l)}ﬂ,“,[Ved]<@4>]>/
o (s )bl T

~ a A A A
Mg = (Ge1,062,0¢3,0¢4) -

Let g(f) denote the corresponding predicted values for those coefficients from the model; specific
values for the elements of g(f) are summarized in Appendix C, The minimum-chi-square (MCS) esti-
mate of § is the value that minimizes

T[7 - g(O)R(7 — g(6)) (36)

for R the information matrix associated with the OLS estimates 7, which is also detailed in Appendix C.
The MCS estimator has the same asymptotic distribution as the maximum likelihood estimator, but has
a number of computational and interpretive advantages over MLE discussed in Hamilton and Wu
(2012b), Because R is block-diagonal with respect to s, the MCS estimates of these parameters are
given immediately by the OLS estimates (31). Hamilton and Wu (2012b) show that asymptotic standard
errors can be estimated using
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Fig, 2. Open Interest. Total number of outstanding crude oil futures contracts of all maturities, daily observations, March 3, 1983 to
July 17, 2011, Vertical lines drawn at January 1, 1990 and January 1, 2005,

E(6-60)(0- 60)'=T-1 (E’Eﬁ)‘]

=~ 9g(f)
G =9 ’0:5,

which are identical to the usual asymptotic errors that would be obtained by taking second derivatives
of the log likelihood function (28) with respect to 4.

4, Empirical results for the baseline model

Crude oil futures contracts were first traded on the New York Mercantile Exchange (NYMEX) in
1983. In the first few years, volume was much lighter than the more recent data, and we choose to
begin our empirical analysis in January, 1990, Fig. 2 plots the total open interest on all NYMEX light
sweet crude contracts. Volume expanded very quickly after 2004, in part in response to the increased
purchases of futures contracts as a vehicle for financial diversification. Some researchers have sug-
gested that participation in the markets by this new class of traders resulted in significant changes in
the dynamic behavior of crude oil futures prices.® A likelihood ratio test (e.g., Harilton (1994, p. 296))
of the null hypothesis that the coefficients of the unrestricted reduced form are constant over time
against the alternative that all 52 parameters changed in January 2005 produces a x2(52) statistic of
181.96, which calls for dramatic rejection of the null hypothesis (p value of 2.2 x 10~16), Since one of
our interests in this paper is to document how futures price dynamics have changed over time, we
conduct our analysis on two subsamples, the first covering January 1990 through December 2004, and
the second January 2005 through June 2011,

The left panel of Table 2 reports minimum-chi-square estimates of the 16 elements of § based on the
first subsample. The eigenvalues of p, the matrix summarizing the objective P-measure persistence of

8 See for example Alquist and Kilian (2007), Singleton (2011), Tang and Xiang (2012), Mou (2010), and Buyuksahin and Robe
(2011),
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Table 2
Pre-2005 parameter estimates for baseline model.
Estimated parameters Implied parameters
c 0.0102 0.0016 A 0.0104 ~0.0061*
(0.0209) (0.0029) (0.0209) (0.0029)
P 0.9974* 0.1839* A -0,0023 —0.0591
(0.0067) (0.0918) (0.0067) (0.0918)
—-0.0006 0.9301* 0.0020* —0.0050
(0.0009) (0.0134) (0.0009) (0,0136)
1 0.9876* 0.9473* A+ AX 0.0037* 3.53e-005
(0.0010) (0.0044) (0.0018) (2.63e-004)
p) 0.0449* 0
(0.0012)
—-0,0038* 0.0047*
(0.0002) (0.0001)
o 0.0357*
(0.0007)
T 0.0099* 0.0081*
(0.0005) (0.0004)
0,0105* 0.0201*
(0.0006) (0,0011)

Left panel: MCS estimates of elements of @ for data from January 1990 through December 2004 (asymptotic standard errors in
parentheses). Right panel; assorted magnitudes of interest implied by value of § (asymptotic standard errors in parentheses), *
denotes statistically significant at the 5% level,

factors, are 0.9956 and 0.9319, implying that both level and slope are highly persistent, with similar
estimates for their Q-measure counterparts (£, and &,).

The differences between the P- and Q-measures, or implied characterization of A, are reported
in the right panel of Table 2. The individual elements of A and A are generally small and statis-
tically insignificant, The last two entries of Table 2 report the elements of A+ AX, where X is the
average value for the level and spread over the sample. The positive value of 0.0037 for the first
element of this vector suggests that an investor who was always long in the two contracts would on
average t‘loave come out ahead over this period, an estimate that is just statistically significant at the
5% level,

Table 3 reports parameter estimates for the later subsample, in which there appear to be significant
differences in risk pricing from the earlier data. Most noteworthy is the large negative value for Aq;.
This signifies that when the spread (the second element of x;) gets sufficiently high, a long position in
the 1- and 2-month contracts would on average lose money, We also see from the last entry of Table 3
that the first element of A + AX is smaller in the second subsample than in the first, and is no longer
statistically significant, The average reward for taking long positions in the second subsample is not as
evident as in the first subsample.

Fig. 3 plots our estimated values for Ay = A + Ax; for each week ¢ in our sample, along with 95%
confidence intervals. The price of level risk (top panel) was uniformly positive up until 2006, but has
often been negative since 2008. By conftrast, slope risk (bottom panel) was typically not priced before
2004, whereas going long the 2-month contract and short the 1-month has frequently been associated
with positive expected returns since then."!

9 standard errors for A and A were obtained by reparameterizing the MCS estimation in terms of A and A instead of c and p.
The values of A and A can be obtained analytically from A = ¢ —c¢® and A = p — pQ with @ given by equation (47) and p? given
by equation (42).

10 Note from (12) and (34) that the expected return on a portfolio with equal weights on the second and third contracts is
given by (1/2)(8, + Bg)A = {1 0] whose average value is the first element of A + AX.

! From (12) and ({34), the expected return on a portfolio that is long the third contract and short the second Is given by
(B85 - B)A = [0 1] whose average value is the second element of A + AX.
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Post-2005 parameter estimates for baseline model,

Estimated parameters

Implied parameters

c

Qp

s

0.1802°
(0.0574)
0.9600*
(0.0131)
~0,0035*
(0.0016)
1.0010*
(0.0001)
0.0439*
(0.0019)
—0,0021*
(0.0003)
~0.0086"
(0.0009)
0.0059*
(0.0005)
0.0087*
(0.0007)

0.0164*
(0.0070)
—0.3487
(0.2018)
0.8629*
(0.0241)
0.8931*
(0.0047)
0

0.0049*
(0.0002)

0.0086"
(0.0007)
0.0223*
(0.0018)

A

A

A+ AX

0.1813"
(0.0574)
~0.0400*
(0.0131)
~0.0039*
(0.0016)
0.0028
(0.0026)

0.0179*
(0.0070)
~0.5892*
(0.2018)
~0.0311
(0.0243)
0.0009*
(0.0003)

Left panel: MCS estimates of elements of ¢ for data from January 2005 through June 2011 (asymptotic standard errors in pa-
rentheses), Right panel: assorted magnitudes of interest implied by value of § (asymptotic standard errors in parentheses), *
denotes statistically significant at the 5% level,

Level risk price

0.051

-0.061

19890

x 107

2000

Slope risk price

2005

_5_

1990

1985

2000

2005

2010

Fig, 3. Prices of factor risk. Top panel: first element of A + Ax; as estimated from baseline model, with sample split in 2005, Bottom
panel: second element, Dashed lines indicate 95% confidence intervals,

Following Cochrane and Piazzesi (2009) and Bauer et al, (2012), another way to summarize the
implications of these results is to calculate how different the log price of a given contract would be if
there was no compensation for risk. To get this number, we calculate f,; = @y + f,x¢, where f, and &,
denote the values that would be obtained from the recursions (10} and (11) if A and A were both set to
zero, The value for the difference f,,[ — fat for n = 8 weeks is plotted in Fig. 4. In the absence of risk
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Fig. 4. Risk premium on 8-week futures contract, Plot of fg, — f3r as estimated from the baseline model with sample split in 2005,

effects, an 8-week contract price would have been a few percent higher on average over the 1990-2004
subsample.'? Since 2005, risk aversion has made a more volatile contribution, though the average
effect is significantly smaller,

In terms of the framework proposed in Section 2 for interpreting these results, the positive average
value for the first element of 4, in the first subsample suggests that arbitrageurs were on average long
in crude oil futures contracts over this period, accepting the positive expected earnings from their
positions as compensation for providing insurance to sellers, who were presumably commercial
producers who wanted to hedge their price risks by selling futures contracts. From that perspective, an
increase in index fund buying could have been one explanation for why a long position in futures
contracts no longer has a statistically significant positive return. In effect, index-fund buyers are
serving as counterparty for commercial hedgers, and are willing to do so without the risk compen-
sation that the position earned on average in the first subsample. The emerging positive return to a
spreading position (positive average second element of A; in the second subsample) would be
consistent with the view that arbitrageurs are buying and holding 2-month futures from oil producers,
but then selling these positions and going short 1-month futures as they sell to index-fund investors,

As noted by Hamilton and Wu (2012b), another benefit of estimation by minimum chi square is that
the optimized value for the objective function provides an immediate test of the overall framework.
Under the null hypothesis that the model is correctly specified, the minimum value achieved for (36)
has an asymptotic 2 distribution with degrees of freedom given by the number of overidentifying
restrictions. The first column of Table 4 reports the value of this statistic for each of the two subsamples,
The model is overwhelmingly rejected in either subsample.

Because the weighting matrix R in(49)is block-diagonal, it is easy to decompose these test statistics
-into components coming from the respective elements of 7, as is done in subsequent columns of Table

12 The average size of this risk premium is 2.9% for the first sample. This compares with an average realized 2-month ex post
return over this period of 2,0% for the long position on a 3-month contract (that is, the average log value of the first contract
minus the average log value of the third contract two months earlier), and an average difference between the first contract and
third contract at the same date of 1.2% (that is, the futures curve sloped down on average with a slope of —1,2%), The last
number is similar to the value reported by Alquist and Kilian (2010), who noted that the 3-month futures price was 1.1% below
the spot price on average over 1987-2007. The difference between the average ex post return to the long position and the
negative of the average slope results from the significantly higher price of oil at the end of the sample than at the beginning.
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Table 4
x? specification test and breakdown by individual components.
x* df. p-value Ty Tq e
Before 2005 86.57 36 473e-6 25.61 43.98 16.99
Since 2005 151.87 36 3.33e-16 120.01 17.22 14,64

¥%; minimum value achieved for MCSE objective function. d.f.: degrees of freedom. p-value: probability of observing x2(d f.)
value this large, Last 3 coelumns: contribution to 2 of individual parameter blocks.

4. In the first subsample, about half of the value of the test statistic comes from the mg block - the
differences in the variability of the level and slope across different weeks of the month is more than can
be explained by the fact that the maturities of observed contracts are changing week to week. The
biggest problem in the second subsample come from the mg block - unrestricted forecasts of the level
and slope vary more week-to-week than is readily explained by differences in the maturities of the
contracts.

It is also possible to look one parameter at a time at where the structural model misses. For each of
the unrestricted reduced-form parameters 7 there is a corresponding prediction from the model g(6)
for what that value is supposed to be if the model is correct. Figs. 5 and G plot the unrestricted OLS
estimates of the various elements of 7 along with their 95% confidence intervals for the first subsample,
The thick red lines indicate the value the coefficient is predicted to have according to the structural
parameters reported in Table 2, The biggest problems come from the fact that the model underpredicts
the difficulty of forecasting the spread in weeks 1 and 3 (the lower left panel of Fig. 6). Figs. 7 and 8
provide the analogous plots for the second subsample. Here the biggest problems come from the
fact that the equations one would want to use to forecast the spread in weeks 3 and 4 are quite different

02 0.056

0.8 -O.021

Fig. 5. mgbefore 2005. Light blue line: Unrestricted OLS estimates of coefficients for regression in which yy, is the dependent
variable, plotted as a function of week of the month, Dashed blue lines: 95% confidence intervals for unrestricted OLS estimates. Bold
red line: predicted values for coefficients derived from baseline model, All estimates based on data January 1990 to December 2004,
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. g and mp hefore 2005, First column: estimated elements of variance-covariance matrix for regression in which yy, is the
dependent variable, plotted as a function of week of the month. Second column: Estimated values of coefficients for regression in
which y,, is the dependent variable, plotted as a function of week of the month, In each panel, light blue lines are unrestricted OLS
estimates, dashed blue lines are 95% confidence intervals for unrestricted OLS estimates, and bold red lines are predicted values for
coefficients derived from baseline model. All estimates based on data January 1990 to December 2004. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

from those found for weeks 1 and 2 (see the right-hand column of Fig. 7). These considerations suggest
looking at models that allow for more general seasonal variation than our baseline specification, which
we explore in the next section,

5. Less restrictive seasonal models
5.1. Structural estimation

Here we consider a system in which the dynamic process followed by the factors is itself dependent
on which week of the month we are looking at:

Xep1 = G+ pjXe + ZjUpyy.
If we hypothesize that the risk-pricing parameters also vary with the season,
A= dy o+ A

then the no-arbitrage conditions (10) and (11) generalize to

6;1 = 6;1—19_,%;) (37)

Qp = an~l +ﬁ;}—]cgn + (1/2)6;1—121(11)2/ n ﬂn—]-
) i)
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Fig. 7. g since 2005, Light blue line: Unrestricted OLS estimates of coefficients for regression in which y;, is the dependent variable,
plotted as a function of week of the month, Dashed blue lines: 85% confidence intervals for unrestricted OLS estimates, Bold red line:
predicted values for coefficients derived from baseline model, All estimates based on data January 2005 to June 2011. {For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where which observation week j is associated with a given maturity n can be read off of Table 1 and
where we have defined pJQ = p;— Aj and @ = ¢j — 4;. Unfortunately, if all the parameters were
allowed to vary with the week j in this way, the model would be unidentified. The reason is that even if
one hypothesizes different values oprQ for different j, a generalization of the algebra in (48) still implies
that I'; should be the same for all j:

By
Tj=Hy| | forj=1234.
By

Since 8 = Byp2p3p%pS and B = B4p3p2pLpY, the only information available from the regressions in
which y; is the dependent variable (26} is about the product pgpgpgpg, which does not allow iden-
tification of the individual terms. In the next subsection we report estimates for a system in which
although ¢, p;, 4;, and A, all vary with j, the differences @ = ¢ — 4 and 2= pj — A; do not. For this
system, the flexibility of the ¢; and p; parameters allows us to fit the unrestricted OLS values for ¢; and
@; perfectly. Details of the normalization and estimation for this less restrictive specification are re-
ported in Appendices B and C,

5.2. Empirical results for the less restrictive seasonal model

Empirical estimates for the parameters of the above system for each of the two subsamples are
reported in Tables 5 and 6. In the first subsample, the main differences are that the specification allows
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Fig, 8. mq and iy since 2005, First column; estimated elements of variance-covariance matrix for regression in which yy; is the
dependent variable, plotted as a function of week of the month. Second column: Estimated values of coefficients for regression in
which y;; is the dependent variable, plotted as a function of week of the month, In each panel, light blue lines are unrestricted OLS
estimates, dashed blue lines are 95% confidence intervals for unrestricted OLS estimates, and bold red lines are predicted values for
coefficients derived from baseline model. All estimates based on data January 2005 to June 2011, (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

the spread to become harder to forecast as the near contract approaches expiry (that is, the (2,2}
element of 5; increases in j) and the level and slope at the end of the month are less related to their
values at expiry than is typical of the relation between y¢; and y; ;.1 at other times (that is, diagonal
elements of p; are smaller forj = 4). Although implied values for A and A are estimated with much less
precision, the overall conclusion that individual elements are small and statistically insignificant ap-
plies across individual weeks as well,

For the second subsample (Table 6), the dependence of Ay ; on week j is very dramatic, with an
average value of —0.78 for j = 1,2, or 3 but an estimated value of +0.46 for j = 4. A high spread
signals lower returns to the long position during weeks 1-3, but this effect completely disappears,
and may even take on the opposite sign, during expiry week 4. This may be related to the strong
weekly pattern to index-fund strategies. For example, to replicate the crude oil holdings of the
Goldman Sachs Commodity Index, an index fund would be selling the k = 0 contract and buying the
k = 1 contract during week j = 3. It is interesting that we also find strong weekly patterns in the
pricing of risk in data since 2005, though trying to interpret those changes in detail is beyond the
scope of this paper. N N

Although our more general specification can fit the unrestricted OLS estimates ¢; and &; perfectly, it
still imposes testable overidentifying restrictions on other parameters, essentially using the 3 pa-

X ~ .4 . -
rameters in {ag,;,€3} to fit the 12 values for {¥;, I‘j}j:1, The resulting x2(9) MCS test statistic for the
first subsample is 13.86, which with a p-value of 0.13 is consistent with the null hypothesis that the




30 J.D. Hamilton, J.C, Wu / Journal of International Money and Finance 42 (2014) 9-37

Table 5
Pre-2005 parameter estimates for seasonal model,
Estimated parameters Implied parameters
cbase 0.0102 0.0016 Jbase 00104 -0.0061*
[ 0.0042 0.0005 A 0.0044 ~0.0068
(0.0467)  (0.0056) (0.0467) (0.0055)
[ —0.,0359 0.0023 Az —0.0356 -0.0050
(0.0422)  (0.0066) (0.0422) (0.0065)
C3 -0.0054 0.0053 A3 —0.0051 —0.0020
(0.0414) (0.0055) (0.0414) (0.0054)
C4 0.0871* -0.0003 Aq 0.0874* ~0.0077
(0.0422)  (0.0073) (0.0421) (0,0079)
pb“e 0.9974* 0.1839* -0.0006 0.9301* Abase -0.0023 -0.,0591 0,0020* -0.0050
M 0.9992* 0.2166 -0.0003 0.9369* Ay —0.0005 -0,0271 0.,0022 ~-0.0061
(0.0152)  (0.2386) (0.0018)  (0.0285) (0.0152) (0.2386) (0.0018)  (0.0281)
£ 1.0137* 0.0371 -0.0010 0.9825* Ay 00139 -0.2067 0.0015 0.0395
(0.0138)  (0.2190) (0.0022)  (0.0343) (0.0138) (0.2190) (0.0021)  (0.0339)
3 1.0011* 0.5076* -0.0018 0.9310* Aj 0.0014 0.2639 0.0007 -0.0120
(0.0135)  (0,2061) (0.0018)  (0.0274) (0.0135) (0.2061) (0.0018)  (0.0270)
P4 0.9726* -0.0718 0,0000 0.8690* Ag -0.0272* -0.3155 0.0025 -0.0740
(0.0138)  (0.2063) (0.0024)  (0.0350) (0.0138) (0.2063) (0.0026)  (0.0375)
shase  0,0449* -0,0038*  0.0047*
A 0.0491* -0.0042* 0.0039*
(0.0026)  (0.0004) (0.0002)
) 0.0447* -0,0046* 0.0052*
(0.0024)  (0.0005) (0.0003)
23 0.0447* —-0.0029* 0.0051*
(0.0024) (0.0004) (0.0003)
%4 0.0446* -0.0035* 0.0059*

(0.0024)  (0.0005)  (0.0003)
g 0og76* 09473
£ 0.9854*  0.9574*

(0.0029)  (0.0070)
aB¥se  0,0357*

ap 0.0331*
(0.0051)
Ty 0.0099*  0.0081* 00105*  0.0201*

Left panel: MCS estimates for elements of § (asymptotic standard errors in parentheses) for the unrestricted seasonal model,
with estimates from baseline model also reported for comparison, with all estimates based on data from January 1990 through
December 2004, Elements of matrices reported as first row, then second row. Right panel; values implied by the reported es-
timates of 4. * denotes statistically significant at the 5% level,

model has adequately captured all the week-to-week variations in parameters. The second subsample
(x*(9) = 13.25, p = 0.15) also passes this specification test,

6. Conclusions

In this paper, we studied the interaction between hedging demands from commercial producers or
financial investors and risk aversion on the part of the arbitrageurs who are persuaded to be the
hedgers' counterparties. We demonstrated that this interaction can produce an affine factor structure
for the log prices of futures contracts in which expected returns depend on the arbitrageurs’ net
exposure to nondiversifiable risk. We developed new algorithms for estimation and diagnostic tools for
testing this class of models appropriate for an unbalanced data set in which the duration of observed
contracts changes with each observation.

Prior to 2005, we found that someone who consistently took the long side of nearby oil futures
contracts received positive compensation on average, with relatively modest variation of this risk
premium over time, consistent with the interpretation that the primary source of this premium was
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Table 6
Post-2005 parameter estimates for seasonal model,
Estimated parameters Implied parameters
chase  0,1802" 0,0164* abase - 0.1813* 0.0179*
[} 0.0361 0.0106 M 0.0374 0.0119
(0.1528)  (0.0169) (0.1528) (0.0167)
cy 0.2252* -0,0299* Ay 0.2264* —0,0286
(0.1094)  (0.0147) (0,1094) (0.0144)
C3 0.0508 0.0443* A3 0.0520 0.0456*
(0.1127)  (0.0120) (0.1127)  (0.0119)
[ 01852 0,0102 A4 0.1865 0.0115
(0,1081)  (0,0175) (0.1081)  (0.0184)
/7‘735e 0.9600* -0.3487 -0.0035* 0.8629* Abase -0.0400* -0.5892* -0,0039* -0.0311
N 09918* —0.4445 -0.0021 1.0026* Aq —-0.0082 -0.6847 ~0.0025 0.1141
(0.0346)  (0.5708)  (0.0038)  (0.0627) (0.0346)  (0.5708) (0.0038)  (0.0622)
P2 0.9488* ~0,5659 0.0066* 1.1369* Ay ~0,0512* -0.8061* 0.0062 0.2484*
(0.0247)  (0.3810)  (0.0033)  (0.0507) (0.0247)  (0.3811) (0,0033)  (0.0500)
3 0.9895* —0.6038 -0,0097* 0.6759* Aj -0,0105 -0,8440" -0,0100* -0.2126*
(0.0257)  (0.3454) (0.0027) (0.0367) (0.0257) (0.3454) (0.0027) (0.0364)
P4 0.9592* 0.7020 -0.0021 0.8796* Ay —0,0409 0.4618 —0.0025 -0.0089
(0.0245)  (0.4244)  (0.0040)  (0.0661) (0,0245)  (0.4244) (0.0042)  (0,0684)
zhase 00439 -0,0021*  0,0049*
P 0,0579* -0.0031* 0.0055*
(0.0047)  (0.0007) (0.0005)
P 0.0423* -0.0013* 0.0054*
(0.0035)  (0.0006) (0.0004)
33 0.0456* —-0,0020% 0.0044*
(0,0037)  (0.0005) (0.0004)
T4 0.0417* -0.0029* 0.0055*

(0.0034)  (0.0007)  (0.0005)
goe 10010 0.8931*
£ 1.0008* 0.8877*

(0.0010)  (0.0059)
afe  -0.0086*

@ ~0.0077
(0.0106)
T 0.0059* 0.0086* 0.0087* 0.0223*

Left panel: MCS estimates for elements of # (asymptotic standard errors in parentheses) for the unrestricted seasonal model,
with estimates from baseline model also reported for comparison, with all estimates based on data from January 2005 through
June 2011, Elements of matrices reported as first row, then second row, Right panel; values implied by the reported estimates of
0. * denotes statistically significant at the 5% level,

hedging by commercial producers. However, we uncovered significant changes in the pricing of risk
after the volume of trading in these contracts increased significantly in 2005, The expected compen-
sation from a long position is lower on average in the recent data, often significantly negative when the
futures curve slopes upward, We suggest that increased participation by financial investors in oil fu-
tures markets may have been a factor in changing the nature of risk premia in crude oil futures
contracts.

Appendix A. Approximations to portfolio mean and variance

We first note that if log X~N(g,a?) then E(X) = exp(u +02/2). Taking a first-order Taylor
approximation around g = ¢ = 0 we have E(X)=1+ u + ¢2/2. Thus in particular since

log (Fy—1 41/ Fnt) NN(,“n—l i (I%_]>

fnote = Onot + By (C+ pXe) — o — BrXe (38)
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Uﬁq = 5;1_122/5n~1 ‘ (39)

we have the approximations

E¢[(Fo1 41 — Fnt) /Fut] = fp-1,e U%-l /2

Er[exp(rjen)] =14 &+ Yj(c+ pxe) + ¥jZ2'y)/2.

Substituting these into (1) gives (5).
Likewise, if

Lo =3} [5 %)

log X; wiLo 9])

then

Cov(X;, X;) = exp[(u,- + uj> + (o +0jj)/2} [exp(oy) — 1].

A first-order Taylor expansion around y; = p; = 0y = 0 = oy = 0 gives
Cov(X;, X)) = 0.

To use this result we define

1
%’Lz+11) = (ﬁ,m»~-,rj,r+1,fo,t+1 = fiefi e = forr oS-t ~th>
X

for L = J 4 N. Notice that conditional on information at date ¢, y;,1 ~N(u,, H' =Z'H) for'?

H=1[¢1 - ¥ Bo - Bnal

Notice further that (1) can be written Wy 1 = kt +Zé:1hqt exp(Vorv1) for hgr = qoe fore = 1,...,Jand
hy = zp_j¢for € = J+1,..., L Thus for by = (hy, ..., by,

Var (W 1) =hiH'SS' Hhy
J , N , N N
= | X GVt 2 zaBag |2 X Gl + 3 Zube1 |-
j=1 n=1 Jj=1 0=1
Appendix B, Normalization
Baseline model. Let p@ = p — A, and notice from (10) that

Bn = (1) b0, (40)

We will parameterize this in terms of £ = (£{,£,) where £; denotes an eigenvalue of p&'. We could
calculate the following matrix as a function of those eigenvalues:

@3 |6 & &

The claim is that if we specify

B Here gy = (i1 ize) FOr pry = Eo+ Wo(c+pre) for € = 1, .o, J and py = gy +Boy_y (C+ pXe) — Aoy — Boye for
L=J+1.,L
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- q-1
p¥ = | KE) H [501 EOHK(g) H’]} (42)
(2x2) L (2x3) (3x2)] 21 (2x3) (3x2)

- 71 1
b = |k | |1, (43)
(2x1) L (2x3) (3x2)]

then (34), the desired condition for §,,, would be satisfied. To prove this, observe from (40) that

o = kO] F(; ; } kK@) ]

3
_ e Fﬂ (44)
&
so that
6o g 4 o
Hy|By | = Hi|& & |[HiKE]. (45)
85 g 8

Substituting (41) into (45) produces (34), as claimed. Thus if we know &, we can use (41) and (44) to
calculate the value of 8, for any n as well as p@ from (42).
To achieve the separate condition (35) on a4, notice from (11) that

an = o+ (Brq + Bz + o +80)cC + (1/2) (By_12% Bny + By 22 Bng + o + Fo=='6o).  (46)
Define

al§) = By +Bup+ + 6
(1%2)

%((5{ Cflo), 3) = g+ (1/2)(B-12% 81 + Bp_y 5% Bz + - + By = fo)
X
so that (46) can be written

tn = (n(E)c? + ¥ (€, a0, %)
where for n = 0 we have {y(¢) = 0 and yg(£, a9, =) = ag. We claim that if we choose

LE)7) Yo(€, o, X)
@ = — | Hy | {4(6) Hy| Y46, 20,2) | |, (47)
€13 Vg€ 00, %)

then (35) would be satisfied. This is demonstrated as follows:

% o(§)c + ¥o (€, a, %)
Hy {014} = Hy | $4(6)c2 + 4 (€, a0, %)
ag {(6)c + g€, a0, %)
ll/O(a aOvz) lf//O(g»aOvE)
= ~H; 1//4(5,(10»2)} + Hy W4(E,ao)2)}
Y6, 0, %) Vg(§, a0, 2)

= 0.




34 J.D. Hamilton, J.C. Wu / Journal of International Money and Finance 42 (2014) 9~-37

Thus if we know £, ag, and =, we can use (46) and (47) to calculate the value of &y, for any n. Also &, ag,
and = allow calculation of ¢? from (47).
Seasonal model. Just as in the baseline model, we let (£1,£,) denote the ordered eigenvalues of p@
and write :
-1
Br =& GIHKE®]
which achieves the normalization (34). Likewise for a; we again use (47) where now

Gal€) = By + By + e+ 6
Kl’n(gv 09, 2) = dp + (1/2) (ﬁ;—lzj(n)zj/'(n)ﬁn—l + ﬂ;—22j(n~1)2}(n_1)ﬂn-2 +oe ﬁ{)zj(])zj(])ﬂ())'

Appendix C. Mapping from structural to reduced-form parameters

Baseline model. Expressions involving By; in (23) can be simplified by noting from (40) and (34)
that

8oy Bo ; .
4-j 4-j
By = Hi| gy | = H [ﬁ%J (PQ) = (PQ> :
/
ﬁ12~j Bs
Thus for example (27) simplifies to

~1

[ 84 Ba_j
Ty = Hy| By || Hi| By
/ /
| 812 Braj
ﬁ? Q 4 1o} 4—j -1 (48)
= | 8 | (09" [(9)"]
/
:68:
Bo
= Hy| 8, | forj=1234
65

The population magnitudes corresponding to the other reduced-form OLS coefficients are as follows:

Q = (pQ)4"jzz/<pQ')4'j for j = 1,2,3,4
Oy = (PQ>3P

= () Sl) =2

a3 5 %o
¢1=Hy| a7 | +Hy| 85 [c—PHy| oy
g B84 ag
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r - !
®q_j ﬁ;‘-f o5_; )
¢j = Hy| agj | +Hy| Bgy [c—BHy | agy | for j=2,3,4
L ¥12-j | ,6’12_]. o413

| X4
’Y] = H2 Ogj | — FJH] [ ag_j } for _] =1,2,3,4.
L &%12-j ] ¥

Given the scalars {£7,€3} (corresponding to the elgenvalues of p? = p — A), we can calculate 8, from
(44) and (41), These 8, give us predicted values for {F} , and the 8, along with £ give pledlcted
values for {§ } Jy Note {£4,£,} also gives us p¢, and thls p us p gives predicted values for {@; } (- From
Ba, =, and ag we can calculate c? from (47) and «, from (46). Using these along with ¢ we then obtain

the pledlcted values for {¢J} ~, and {7]}
The information matrix for the OLS estimates 7 = (R, T, *p7e) is given by

Rp 0 0 0
5 0 Rg 0 0
Re = Q- 49
i 0 0 Rp © (49)
L0 0 0 R
Ryy O 0 0
Rp= |0 Rz 0 0
0 0 Ry O
L0 0 0 Ry

“ ~—1 - T
Rey = Q5 @771 3" x, al,
1

Rm 0 o0 0
Rp= |0 Rz 0 0
0 0 Rgs O
0 0 0 Ry

el e
RQj:(1/2)D’2<Qj ®Qj1>D2

10 0
010
Dr=10 10
0 0 1
Ry 0 0 0
oo |0 Rn o0 0
0 0 Ry 0
0 0 0 Ry
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1/2)e;; 0 0 0
B 0 (1/2)75, O 0
a ~d
0 0 (1/2)5., 0
0 0 0 (1/2)5,4

where D is the duplication matrix satisfying D, vech(Q) =vec(Q) for 2 x 2 symmetric matrix Q. Note
that for all models considered the MCS estimate of g, is always equal to the unconstrained MLE aej and
so contributes 0 to the weighted objective function,

Unrestricted seasonal model. For this model the specifications for v; and I'; are the same as in the
baseline model, while the expressions for the other parameters become

Q) = (/JQ)324>311 (pQ')3
Q = (/)Q>4~jzj_121’-#1 (pQ/)‘H for j = 2,3,4
o = (pQ)3p4

() T [(19) ] por =234 (50)

&:.9‘
i

[1%] ; ' 4%}
$1 = Hy| a7 | +Hi| By |ca—P1Hy |y
o B4 ag

/
Cq—j ﬁ;ﬁﬁ' ®5_j
(f)j =Hy| ag | +Hy ﬁg‘j G M(I)jf‘ﬁ Qg_j for j = 2,3,4.
. ! .
M2 Bio- 13

Minimum-chi-square estimation in this case is achieved by first choosing {£, ag, £1, 29, 23, 84} s0 as

Lo on 4 ,
to minimize the distance from the OLS estimates {7, I';, ‘Qj}j=]' From ¢ we can then calculate p2, with
which we can obtain p; analytically from (50} in order to fit these OLS coefficients perfectly. The values

¢j1 are likewise obtained analytically from $j.
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