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Dear Ms. Jurgens,

We are a group of researchers at the University of Michigan, Ann Arbor, whose collective expertise
covers market microstructure, financial regulation, computational market mechanisms, and agent-
based modeling. We have studied the design and operation of rules for financial markets from our
various disciplinary perspectives spanning computer science, finance, and law.

Our group comprises: Elaine Wah, Ph.D. candidate in Computer Science and Engineering at the
University of Michigan College of Engineering; Michael Barr, Professor of Law at the University
of Michigan Law School and Professor of Public Policy at the Gerald R. Ford School of Public
Policy; Uday Rajan, Associate Professor of Finance and Finance Area Chair at the Stephen M.
Ross School of Business; and Michael P. Wellman, Professor of Computer Science and Engineering
at the University of Michigan College of Engineering. Barr previously served as Assistant Secretary
of the Treasury for Financial Institutions (2009-2010) and was a key architect of the Dodd-Frank
Act. Rajan conducts theoretical and empirical research in market microstructure, with a focus on
information frictions such as adverse selection and moral hazard. Wellman works at the intersection
of computer science and economics, and has extensive experience designing markets for electronic
commerce and decentralized computation.

We appreciate the opportunity to submit the following comments in response to the recent concept
release by the Commodity Futures Trading Commission (“CEFTC” or “Commission”). One of us
has advocated frequent call markets as a remedy for the latency arms race for several years.'

1See Michael Wellman, “Countering High-Frequency Trading,” July 30, 2009, http://mblog.lib.umich.edu/
strategic/archives/2009/07/countering_high.html.



Our research employing computational models of financial markets is directly applicable to the
evaluation of automated and interconnected automated trading environments.

The computational perspective is especially apposite for automated trading environments, where
outcomes hinge on the interactions of computational and communication processes. Details of
trading algorithms and the electronic systems in place for processing and matching orders can
pivotally effect the performance and stability of the markets they facilitate.

Our comments below discuss selected issues raised in the concept release dealing with the effect
of latency on market participants and the proposal of frequent call markets. We do not seek to
analyze all costs and benefits of this latter proposal; rather, we focus on frequent call markets
as a means to address the negative effects of the latency arms race, particularly those related to
allocative efficiency.

Advances in High-Speed Communication Networks and Reductions in Latency: Effects
of Latency on Allocative Efficiency

The Commission requested comment on whether the extent of latency in communication networks
can have an adverse impact on markets. Based on experimental evidence, we conclude that com-
munication latencies inherently manifested by message transmission degrade overall market quality
and fairness in the context of fragmented continuous-time markets.

The distinguishing feature of high-frequency trading (“HFT”) is exploitation of latency advantages
to enhance profits. Latency here refers to the time involved in receiving, processing, and acting
upon new information. High-frequency traders exploit advantages in latency through various means
(e.g., co-location and direct data feeds from exchanges). The drive for speed advantage has led to a
latency arms race, in which HFTs compete to access and respond to information faster than their
competitors. Billions of dollars have been sunk in pursuit of reduced latency, raising questions
about the social value of such investments and the fairness and transparency of a system that
appears to favor elite, high-speed investors.?

Numerous arguments about the social costs incurred and risks imposed by the latency arms race
have been put forth in reports cited by the Commission as advocating the replacement of continuous
trading with frequent call markets.> We generally agree with these points. The continuous double
auction, where orders are matched as they arrive, is the predominant market mechanism in today’s
markets. This is in contrast to a periodic call market, in which orders are matched to trade at
regular, fixed intervals. Eliminating the arms race through discrete-time clearing better aligns the
rate of trading with the rate of economic information.? In this response, we emphasize a benefit of
employing frequent call markets not analyzed in these other studies: improved allocative efficiency.
To explain this benefit, we need to describe how fragmented markets and speed advantages enable
latency arbitrage HF'T strategies.

2See David Schneider, “The microsecond market,” IEEE Spectrum, June 2012.

3See Eric Budish, Peter Cramton, & John Shim, “The High-Frequency Trading Arms Race: Frequent Batch Auctions
as a Market Design Response” (July 7 2013); J. Doyne Farmer and Spyros Skouras, “Review of the Benefits of a
Continuous Market vs. Randomised Stop Auctions and of Alternative Priority Rules (Policy Options 7 and 12),”
Foresight U.K. Government Office for Science, Economic Impact Assessment (2013).

“See Michael Wellman, “Trading Faster Than The Speed of Reality,” TechCrunch, June 14, 2013, http://
techcrunch.com/2013/06/14/trading-faster-than-the-speed-of-reality/.
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Market fragmentation creates the potential for price disparities across exchanges, as each exchange
aggregates orders individually. In an attempt to mitigate the impact of fragmentation on equity
securities markets, the Securities and Exchange Commission promulgated Regulation NMS, which
mandates order routing for best execution as well as the cross-market communication of best prices.
An entity called the Securities Information Processor (“SIP”) generates a public price quote called
the National Best Bid and Offer (“NBBO”)—also known as the public ticker or the consolidated
tape—with some delay on the order of milliseconds. This communication latency can be exploited
by a high-frequency trader with access to direct feeds from the exchanges. Because order routing
is based on information from the SIP, an out-of-date NBBO quote may cause an order to be sent
to the incorrect market. As a result, there may be discrepancies between the actual best prices
available and the public price quote. This opens the door to arbitrage strategies based on differential
latency between an HF T with direct access to exchanges and traders observing only local and public
quotes.

To analyze the effect of latency arbitrage on allocative efficiency, we designed and implemented
a simple two-market model of latency arbitrage. This model is the first to our knowledge to
capture the interplay of market fragmentation, NBBO-based routing, and exchange clearing rules
(see Appendix). In our model, a single security is traded on two markets, both of which employ
a continuous clearing mechanism. The market environment is populated with background traders
(i.e., retail investors), each of whom arrives to submit a single limit order for one unit of the
security to one of the two markets. Due to the delay in communication, the NBBO may not
always reflect actual best prices in the two markets, so orders may be routed to the incorrect
market. An infinitely fast latency arbitrageur, with undelayed access to the NBBO and both
markets, can immediately capitalize upon price disparities between the two markets to make a risk-
free profit. Arbitrage opportunities in our model thereby arise from the fragmentation of markets
across multiple exchanges.

Our results demonstrate that the presence of the latency arbitrageur significantly reduces total
surplus. The latency arbitrageur does not simply transfer surplus from the background traders
to itself; total gains from trade including HFT profits are smaller when the speed-advantaged
arbitrageur is present. Such a degradation in allocative efficiency means that the arbitrage activity
actually inhibits the efficient matching of buyers and sellers. Preliminary analysis indicates that
these conclusions are robust to variations in the trader model, in particular allowing background
traders to reenter and trade more than a single unit.

Our result is in line with known flaws of continuous-time trading mechanisms.® In continuous
markets, matching orders transact immediately, potentially forgoing more profitable matches that
could be forged with subsequent orders. A modest degree of fragmentation actually ameliorates
this issue, by making it less likely for extra-marginal orders to trigger inefficient transactions. In
our study, we observed an efficiency advantage in the two-market model compared to a centralized
market. The latency arbitrageur wipes out this benefit, however, by ensuring that orders that
would trade in a consolidated continuous market also trade in the fragmented case. Given the defi-
ciencies of continuous-time matching, aggregating orders over frequent periodic intervals—instead
of continuously—would furnish significant gains in allocative efficiency.

5See Dhananjay K. Gode & Shyam Sunder, “What makes markets allocationally efficient?” Quarterly Journal of
Economics (1997).
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Our model is not reliant on characteristics of any specific asset class and thus can be generalized
to all fragmented markets in which quotes are communicated with some latency. By degrading
allocative efficiency, latency in the message transmission process—particularly between exchanges—
clearly can have a serious adverse impact on markets.

Market Quality Incentives: Frequent Call Markets

The Commission’s concept release discusses various proposals aimed at disincentivizing potentially
harmful HFT activities. In our judgment, these policy measures will not effectively address the
underlying problem of inefficient transactions perpetuated by continuous trade matching. We
endorse the proposal of frequent call markets as a means to neutralize the speed advantages of
high-frequency traders and thus end the latency arms race.

A call market effectively neutralizes small latency advantages by decoupling the precise sequence
of order arrival with clearing. This ensures that there is no advantage to receiving and responding
to information slightly faster than other traders, because all orders submitted within a clearing
interval are processed and matched at the same time. The call market veils all submitted orders
within each bidding interval, as in a sealed-bid auction. Clearing prices and price quotes (prices of
the best unfilled orders) are available only after each market clear event. This opacity guarantees
that all market participants ultimately receive—and respond to—the same information regardless
of latency, thereby nullifying the benefit of relative speed within the interval. Periodic clears
every second, for example, would be virtually imperceptible to investors but would substantially
curb HF'T activity. We submit that there is a range of settings for this clearing interval that would
effectively deter latency races while providing sufficient market timeliness for high-functioning price
discovery.

The allocative efficiency benefits of call markets have already been well established. Our research
employing agent-based simulation has provided additional evidence that switching to a frequent
call market that clears orders at fixed intervals significantly improves allocative efficiency (see
Appendix). Our experimental results demonstrate that a centralized periodic call market matching
orders every second eliminates the advantage of the latency arbitrageur and increases total surplus,
even when surplus is discounted steeply by execution time.

Operation of frequent call markets is clearly technically feasible. In fact, many markets already
operate as hybrids of continuous and periodic trading. For example, the New York Stock Exchange
opens with a call auction. Within market design, mechanisms for batched trading are well studied,
as are efficient algorithms that can compute a uniform price for matching a large number of orders
in available amounts of time. Moreover, for call markets it is possible to organize orders into a
specialized data structure as they arrive, so that the transaction price is known as soon as the
clearing time arrives. The overall clear operation then depends only on the number of executing
orders (as opposed to all orders received).b

The Commission also requested comment on the recommendation of time-weighted pro rata trade
allocation.” This proposal is designed to reduce the value of speed advantages, in this case by

5See Peter R. Wurman, William E. Walsh, & Michael P. Wellman, “Flexible double auctions for electronic commerce:
Theory and implementation,” Decision Support Systems (1998).

"See John McPartland, “Recommendations for Equitable Allocation of Trades in High Frequency Trading Environ-
ments,” (July 25, 2013).
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removing time priority for tie-breaking among equal-price limit orders. For frequent call markets,
we agree that some form of pro rata allocation is appropriate, as there is no obvious reason to accord
time priority to orders received within the clearing interval. We expect that the natural removal
of time priority within intervals will be sufficient to eliminate the arms-race issues of concern here.
In consequence, we would consider adoption of a cardinal time-weighted pro rata trade allocation
formula to be rendered somewhat redundant by the periodic clearing mechanism. If the Commission
remains concerned regarding tie-breaking, we suggest diminishing instances of ties by decreasing
tick size (reducing granularity of the price space).

We also question the necessity of a randomization feature proposed for defining the exact clear
interval of frequent call markets. Batching already significantly reduces the latency advantage
of HFTs, as they receive the same best price information as retail investors during each clearing
period. The window of speed advantage is a small fraction of the overall clear interval, and thus
the probability of a significant real-world event occurring in that window, exploitable by HFTs but
not normal-speed traders, is likewise small. Moreover, the gain from exploiting this information is
reduced by two factors: (1) price competition among HFTs (it is not winner-take-all for the first
to arrive), and (2) lack of visibility into the call market order book. In fact, randomizing clear
time provides further incentive for speed (which seems to exactly cancel the disincentive); on any
significant event, the HF'T can increase its chances of submitting an order within the next clearing
interval by reducing its latency.

We believe that frequent call markets will be a viable alternative to continuous trading, as periodic
clearing will attract liquidity-providing HF'T activity but deter predatory strategies that exploit re-
tail investors. Switching to frequent call markets would eliminate the competitive latency arms race
by reducing the speed advantage of high-frequency traders, while promoting aspects of automated
trading associated with improved liquidity, price discovery, and efficiency.

Regulatory recommendations

The first prerequisite to introduction of frequent call markets is clarification that admitting orders
in a sealed-bid manner during designated short clearing intervals would not violate disclosure rules.
Moreover, any rules regarding routing for best execution should be clarified to permit routing to
periodic-clearing markets. Once it is established that frequent call markets are unencumbered in
terms of regulation, the next question is whether any steps are necessary to mandate or encourage
adoption of this mechanism. At present, we do not have sufficient information about the costs and
benefits of such an approach to offer a firm recommendation. We are not aware of any economic
reason that frequent call markets could not coexist alongside continuous mechanisms, during a
transition phase or even indefinitely.

Further regulatory attention should also be devoted to ensuring that exchanges are accountable for
the secrecy of orders submitted as sealed bids within clearing intervals. This entails barring any
preferential access to such information by any parties. Such an assurance is critical for achieving
the goal of neutralizing small latency advantages.

Although we do not endorse the proposal of randomizing clear times, we do recommend that if such
a feature were adopted, regulations would impose mechanisms (based on cryptographic techniques)
to ensure that the clear times are actually chosen randomly and are not known to any parties ahead
of the clear.
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We applaud the Commission for requesting input on automated trading environments and high-
frequency trading and for seeking to better understand alternative market design as a means to
improve market quality. We believe the proposal of frequent call markets is a practical means of
preventing a race to the bottom and of promoting overall allocative efficiency. We would welcome
the opportunity to discuss any of the comments or recommendations in this letter with the Com-
mission staff in greater detail.

Sincerely,

/s/

Elaine Wah

Ph.D. Candidate in Computer Science and Engineering
University of Michigan College of Engineering

/s/

Michael Barr

Professor of Law

University of Michigan Law School
Professor of Public Policy

Gerald R. Ford School of Public Policy

/s/

Uday Rajan

Associate Professor of Finance
Chair, Finance Area

Stephen M. Ross School of Business

/s/
Michael P. Wellman
Professor of Computer Science and Engineering

University of Michigan College of Engineering

Page 6



Proceedings Article

Latency Arbitrage, Market Fragmentation, and Efficiency:
A Two-Market Model

ELAINE WAH, University of Michigan
MICHAEL P. WELLMAN, University of Michigan

We study the effect of latency arbitrage on allocative efficiency and liquidity in fragmented financial markets.
We propose a simple model of latency arbitrage in which a single security is traded on two exchanges, with
aggregate information available to regular traders only after some delay. An infinitely fast arbitrageur profits
from market fragmentation by reaping the surplus when the two markets diverge due to this latency in
cross-market communication. We develop a discrete-event simulation system to capture this processing and
information transfer delay, and using an agent-based approach, we simulate the interactions between high-
frequency and zero-intelligence trading agents at the millisecond level. We then evaluate allocative efficiency
and market liquidity arising from the simulated order streams, and we find that market fragmentation and
the presence of a latency arbitrageur reduces total surplus and negatively impacts liquidity. By replacing
continuous-time markets with periodic call markets, we eliminate latency arbitrage opportunities and achieve
further efficiency gains through the aggregation of orders over short time periods.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences|: Economics

Additional Key Words and Phrases: High-frequency trading; Regulation NMS; allocative efficiency

1. INTRODUCTION

Although program trading has been a reality for many years now, the pervasiveness, speed,
and autonomy of trading algorithms are reaching new heights. High-frequency trading
(HEFT)——characterized by large numbers of small orders in compressed periods, with po-
sitions held for extremely short durations—is estimated to have accounted for as much as
78% of total trading volume in 2009, up from nearly zero in 1995 [Schneider 2012].! The
practice of HFT has generated several public controversies regarding its ramifications for
the transparency and fairness of market operations as well as its effects on market volatility
and stability.

The debate has been spurred by recent high-profile events: for example, in August 2012,
technology issues in the market-making unit at Knight Capital Group caused a flood of
orders for approximately 150 stocks in the New York Stock Exchange. The repeated buying
and selling of millions of shares caused dramatic price changes in these stocks, and as a
result, all trades executed at 30% higher or lower than the opening price were later canceled
[Popper 2012]. Another incident of market turbulence was the so-called “Flash Crash” of
May 6, 2010, during which the Dow Jones Industrial Average exhibited its largest intraday

IDefinitive figures are elusive, but proportions exceeding two-thirds are widely reported, for instance 73%
in “SEC runs eye over high-speed trading,” Financial Times, 29 July 2009. This no doubt includes straight-
forward monitoring for arbitrage opportunities—for example between index securities and their defining
constituents, which itself has long represented a large fraction of exchange trading volume.

This work is supported by the National Science Foundation under Grants 0654014 and CCF-0905139.
Author’s addresses: E. Wah and M. P. Wellman, Computer Science and Engineering, University of Michigan,
2260 Hayward Street, Ann Arbor, MI 48109-2121; email: {ewah,wellman}@umich.edu.

Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be honored. Abstracting with credits
permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any com-
ponent of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
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855



Proceedings Article

SIP
C—
NBBO  {wwmmmm

—_—
G
| J
& milliseconds Order feeds
NBBO* | (=

Fig. 1. Exploitation of latency differential. Rapid processing of the order stream enables private computa-
tion of the NBBO before it is reflected in the public quote from the SIP.

decline (approximately 1,000 points). During a five-minute period, some companies traded
for as low as a penny and as high as nearly $100,000. The rout continued until an automatic
stabilizer on the exchange paused trading for five seconds, after which the markets recovered
[Bowley 2010]. Some have argued that the fragmented nature of current equity markets is to
blame for such abrupt and severe price changes [Madhavan 2011; Golub et al. 2012]. These
events and the controversy surrounding HFT underscore the necessity of gaining a greater
understanding of how high-frequency trading and current market structure affects markets
and their participants.

Many HFT strategies exploit advantages in latency—the time it takes to access and
respond to market information. Trading on these advantages has been estimated to account
for $21 billion in profit per year [Schneider 2012].2 HF traders achieve such advantages by
investing in specialized computer hardware and software, co-locating servers in exchanges’
data centers, and constructing dedicated communication lines.

The HF'T strategy we examine here is latency arbitrage, where an advantage in access
and response time enables the trader to book a certain profit. Arbitrage is the practice
of exploiting disparities in the price at which equivalent goods can be traded in different
markets. Such disparities can arise in financial markets in several ways, and the term “la-
tency arbitrage” has been applied to a variety of practices that exploit speed advantages. In
this paper, we model a specific type of latency arbitrage in which disparities arise from the
fragmentation of securities markets across multiple exchanges. This fragmentation has been
a major trend, particularly in the United States over the last decade [Arnuk and Saluzzi
2012]. U.S. securities regulations have attempted to mitigate the effect of fragmentation
through the formulation of Regulation NMS, which mandates cross-market communication
and the routing of orders for best execution [Blume 2007; Securities and Exchange Commis-
sion 2005]. Orders stream into exchanges, which are required to feed summary information
about their best buy and sell orders to an entity called the Security Information Processor
(SIP). The SIP continually updates public price quotes called the “National Best Bid and
Offer” (NBBO).

We illustrate this process and the potential for latency arbitrage in Figure 1. Given order
information from exchanges, the SIP takes some finite time, say ¢ milliseconds, to compute
and disseminate the NBBO. A computationally advantaged trader who can process the
order stream in less than ¢ milliseconds can simply out-compute the SIP to derive NBBO*,
a projection of the future NBBO that will be seen by the public. By anticipating future
NBBO, an HFT algorithm can capitalize on cross-market disparities before they are reflected

2Profit figures are considerably more uncertain than volume estimates. Kearns et al. [2010] present an
interesting approach to derive an upper bound on HFT profits. Presumably the billions HFT firms invest
annually in technology and infrastructure [Adler 2012] represent a lower bound on gross trading profit.
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in the public price quote, in effect jumping ahead of incoming orders to pocket a small but
sure profit. Naturally this precipitates an arms race, as an even faster trader can calculate
an NBBO** to see the future of NBBO*, and so on.

The latency arms race as sketched above is fundamentally an outgrowth of continuous
trading: a property of mechanisms that distinguish precedence according to arbitrarily small
time differences. By moving to a discrete-time model—which introduces short but finite
clearing intervals (as in a call market)—we can neutralize small disparities in information
access and response time. A driving question of this work is how such a mechanism-design
intervention would affect market performance.

More broadly, we seek to understand not only the effects of latency arbitrage on mar-
ket efficiency and liquidity, but also the interplay between market fragmentation, clearing
mechanisms, and latency arbitrage strategies in producing this performance. Such questions
about HFT implications are inherently computational, as the very speed of operation renders
details of internal market operations—especially the structure of communication channels—
systematically relevant to market performance. In particular, the latencies between market
events (transactions, price updates, order submissions) and when market participants ob-
serve these activities become pivotal, as even the smallest latency differential can signifi-
cantly affect trading outcomes. Lacking suitable data to study these questions empirically,?
we pursue a simulation approach. Simulation modeling enables us to incorporate causal
premises, specifically presumptions of how trading behavior is shaped by environmental
conditions.

We propose a simple model that captures the effect of latency across two markets with a
single security. Our model is the first to capture the interplay of latency and fragmentation
as well as the regulatory environment responsible for current equity market structure, and
we have the first results quantifying the effect of latency arbitrage on surplus allocation
as a function of latency and market rules. Using an agent-based approach, we simulate
the interactions between high-frequency and background traders. Our simulation system
allows us to compare the performance of fragmented and consolidated market models under
the same underlying order streams. We evaluate efficiency (as measured by total surplus)
arising from the simulated orders, under a range of latency settings. Our main finding is that
latency arbitrage not only reduces profits of the background traders, but also diminishes
surplus overall. Perhaps surprisingly, market fragmentation per se does not harm efficiency;
in fact some degree of fragmentation mitigates inefficient trades that are often executed
by a continuous mechanism. The discrete-time call market eliminates latency arbitrage by
construction and, by virtue of temporal aggregation, yet more effectively matches orders,
producing significantly greater surplus.

The paper is structured as follows. In Section 2, we discuss related work on agent-based
financial markets and models of HF'T and market structure. We describe our two-market
model in Section 3. In Sections 4 and 5, we discuss our simulation system and experiments.
We present our results in Section 6 and conclude in Section 7.

2. RELATED WORK
2.1. Agent-based financial markets

There is a substantial literature on agent-based modeling (ABM) of financial markets
[Buchanan 2009; Farmer and Foley 2009; LeBaron 2006], much of it geared to reproduce

30rder activity at the temporal granularity of interest here is generally unavailable for public research, and
it is unclear whether data on communication latencies and the end-to-end routing of orders among brokers
and exchanges is available from any source. What high-frequency trading data does exist commercially is
prohibitively expensive. Moreover, even full details on conceivably observable trading activity could not
directly resolve counterfactual questions, such as the response of financial markets to possible shocks or the
effects of alternative market rules and regulations.
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and thereby explain stylized facts from empirical studies of market behavior. For exam-
ple, simulated markets have been constructed to reproduce phenomena observed in real
stock markets, such as bubbles and crashes [LeBaron et al. 1999; Lee et al. 2011]. Because
agent behavior is shaped by the market environment, which includes interactions with other
agents over time, such models can support causal reasoning (as in the study by Thurner
et al. [2012] establishing the effect of leverage on price volatility). One prominent example
of an agent-based financial market is the Santa Fe artificial stock market [Palmer et al.
1994; LeBaron 2002]. ABM has also been used to model financial markets for applications
such as portfolio selection [Jacobs et al. 2004] and determining the distributions of order
and trading waiting times in a limit order book [Raberto and Cincotti 2005].

2.2. High-frequency trading models

Much of the current literature on the effects of HF'T relies on the evaluation of historical
order data. Hasbrouck and Saar [2012] use NASDAQ order data to construct sequences
of linked messages describing trading strategies. They find that this low-latency activity
improves short-term volatility, spreads, and market depth. Angel et al. [2011] conclude that
the emergence of automated trading and HF'T has improved various market measures such
as execution speed and spreads. Additional work suggests a link between HF'T and increased
volatility [Arnuk and Saluzzi 2012]. In a high-profile study released a few months ago, Baron
et al. [2012] find that some kinds of HFT activities directly harm ordinary investors.

Others rely on theoretical analysis to determine the optimal behavior of high-frequency
traders. Avellaneda and Stoikov [2008] derive an optimal limit order submission strategy
for a single high-frequency trader acting as a liquidity provider, running numerical simula-
tions to assess the agent’s performance under varying strategies. Cohen and Szpruch [2012]
propose a single-market model of latency arbitrage with one limit order book and two in-
vestors operating at different speeds. The fast trader employs a strategy that determines in
advance the quantity the slow investor intends to trade, using this information to generate
a risk-free profit.

In a rare application of ABM to HFT, Hanson [2012] finds that market liquidity and total
surplus vary directly with the number of HF traders.

2.3. Modeling market structure and clearing rules

Several prior works seek to identify the effects of market fragmentation and clearing rules,
mainly via anecdotal evidence elicited from historical data. On the theoretical side, Mendel-
son [1987] investigates the effect of consolidation versus fragmentation of periodic call mar-
kets, without consideration of arbitrage between the submarkets. O’Hara and Ye [2011] use
historical quote data and execution metrics to demonstrate that market fragmentation does
not appear to harm measures such as spreads, execution speed, and efficiency. Bennett and
Wei [2006] compare the execution costs of stocks that have switched from the NASDAQ to
the more consolidated NYSE, finding evidence that execution costs decline with order flow
consolidation. Amihud et al. [2003] examine the response of equities on the Tel Aviv Stock
Exchange to the exercise of corporate warrants, concluding that consolidation improves lig-
uidity. However, none of these prior studies attempt to directly model the communication
latencies arising from market fragmentation and the resultant arbitrage opportunities.

Switching to a discrete-time clearing mechanism, as in a call market, has been proposed
as a means to eliminate the exploitation of latency differentials across multiple exchanges
[The Government Office for Science, London 2012; Sparrow 2012]. Empirical work on the
effects of such a change is limited and again relies largely on the analysis of historical
events. For example, Amihud et al. [1997] find that switching from a daily call auction to a
combination of discrete and continuous trading in the Tel Aviv Stock Exchange is associated
with improvements in liquidity.
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2.4. Our model in relation to prior work

To study latency arbitrage as made possible by market fragmentation, we develop an agent-
based model populated by representative trading strategies interacting within carefully spec-
ified market mechanisms. Our model comprises a latency arbitrageur and multiple non-HF
traders, with a single security whose trading is fragmented across two markets. Our proposed
two-market model is unique in capturing the connections between market fragmentation,
communication latencies, regulations, and latency arbitrage. As discussed above, previous
analytical or agent-based HFT models employ a single market or order book—rendering
them incapable of capturing the effect of fragmentation—and they fail to incorporate the
communication delays enabling cross-exchange arbitrage.

The focus on accurately modeling communication latencies motivates the study of latency
arbitrage and its effect on efficiency and liquidity from a computational perspective. We
implement our model in a discrete-event simulation system that captures the processing
and information transfer delay in the dissemination of the public NBBO price quote by
explicitly modeling the communication patterns between background investors, exchanges,
and the SIP operating in current US equity markets.

3. TWO-MARKET MODEL

We propose a simple model for latency arbitrage across two markets populated by a single
high-frequency trader and multiple background traders. We describe the specifics of this
model in Section 3.1. In Sections 3.2 and 3.3, we discuss the behaviors of the latency
arbitrageur and background traders, respectively. We present an example of how a latency
arbitrage opportunity may arise in this two-market model in Section 3.4.

3.1. Model description

Our model of latency arbitrage consists of one security traded on two markets, each em-
ploying a continuous double auction (CDA) mechanism. The CDA is a simple and standard
two-sided market that forms the basis for most financial and commodities markets [Fried-
man 1993]. Agents submit bids, or limit orders, specifying the maximum price at which
they would be willing to buy a unit of the security, or the minimum price at which they
would be willing to sell.* CDAs are continuous in the sense that orders may be submitted at
any time. When a new order matches an existing order in the order book, the market clears
immediately and the trade is executed at the limit price of the incumbent order—which is
then removed from the book. A buy order matches and transacts with a sell order when
the limits of both parties can be mutually satisfied. CDA markets also continually publish a
price quote consisting of two parts: The BID quote is the highest-price buy order in the or-
der book, and the ASK quote is the lowest-price sell order. The difference between the two
quote components is called the BID-ASK spread. A CDA invariant is that BID < ASK;
otherwise, the orders would have matched and been removed from the order book.

The two markets are linked by a public NBBO signal (see Figure 2). Limit orders lodged
in either market are forwarded to the SIP, which calculates and reports an NBBO—based
on the quotes from the two markets—with some finite delay up to 6. This latency reflects
the time required to receive information about activities in the two markets and compute
an updated public price signal.

Retail and institutional investors generate limit orders according to an evolving fun-
damental (driven by news) and other private factors. Each non-HF investor is primarily
associated with one of the markets. An order is sent to the trader’s primary market unless
the NBBO indicates that it could be executed in the alternate market at a price better than
that available on the primary market.

4We assume that there is a limit on the granularity of prices, and thus we represent prices here by integers.
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Fig. 2. Two-market model with one infinitely fast latency arbitrageur and multiple background investors.
A single security is traded on the two markets. Each background investor is associated primarily with one of
the two markets, and its order is routed to its alternate market if and only if the NBBO quote indicates an
immediate execution. The latency arbitrageur has undelayed access to both markets, so it can immediately
detect arbitrage opportunities arising from the delay in NBBO calculation.

More precisely, let BID; and ASK;, where j € {1,2}, denote the current BID and ASK
quotes, respectively, in market j. Similarly, let BIDy and ASKpy represent the NBBO
quote. Background traders have direct access to the quotes on their primary market and
the NBBO, but not to those on the alternate market. Suppose a trader associated with
market 1 generates a limit order to buy a unit at price p. This order is routed to market 2
if and only if p > ASKy and ASKy < ASK;. Otherwise, the order goes to market 1, the
trader’s primary market. Note that the conditions for submitting to the alternate market
entail that the trader’s order would execute there immediately, if in fact the NBBO reflects
the current global state. If the order is routed to the primary market, it may execute right
away (if p > ASK,); otherwise, it is added to market 1’s order book. The rule for routing
sell orders is analogous.

The latency arbitrageur in this model can determine the best prices in each market
before the NBBO updates, due to its ability to receive and process order streams faster
than background investors. It can thus immediately detect an arbitrage situation, which
occurs whenever BID; > ASKs or BIDy > ASK;. We assume the arbitrageur can respond
infinitely fast, so it quickly takes the profit from such arbitrage situations by submitting
executable orders to the two markets. Note that the arbitrage opportunity can arise only to
the extent that the NBBO information is out of date. If the SIP were able to compute and
publish the NBBO with zero latency, then a new order would always be routed correctly and
would thereby execute immediately if there were a matching order in either market. Any
finite delay, however, opens the possibility that an order is routed to the investor’s primary
market, despite there being a matching order in the alternate market that had arrived too
recently to be admitted in the available NBBO. An out-of-date NBBO can also cause an
order to be improperly routed to the alternate market despite it no longer matching there,
even if there is a matching order in the primary market.

3.2. Latency arbitrageur

The latency arbitrageur (LA) in the two-market model operates as follows. LA first obtains
current price quotes in both markets, then checks whether an arbitrage situation exists.
Denote the best price available to sell at by BID* = max{BID;, BID}, and let ASK* =
min{ ASK;, ASK,} be the best price available to buy. Given a threshold a > 0, LA deems
the current state a worthwhile arbitrage opportunity if and only if BID* > (1 + «) ASK™.
To execute the arbitrage, LA submits orders exploiting the price differential to the two
markets simultaneously. Under our assumption that LA is infinitely fast, bidding any price
at or better than the current quote would lead to successful execution at the quoted prices.
In our implementation, LA calculates the midpoint m between BID* and ASK™, then
submits an order to buy at |m] to the market with the better ASK price and an order to
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sell at price [m] to the market with the better BID price. LA surplus (i.e., profit) for these
trades is BID* — ASK™.

3.3. Background traders

Prices in our model are driven by the activity of background investors. We assume a large
population of potential investors, who arrive to trade one unit in the market according to
a Poisson process with rate .

The bid or offer price the agent submits is determined by two components: its underlying
valuation for the security, which is a product of both fundamental and private factors, and
its trading strategy, which specifies the price of its limit order.

3.3.1. Valuation model. Each agent possesses a private valuation, which reflects individual
differences in the marginal value of the security (e.g., due to risk aversion, outside portfolio
holdings of related securities, or immediate liquidity needs), as well as preferences regarding
urgency to trade. This depends on a public (global) fundamental value r;, which evolves
according to a mean-reverting stochastic process (similar to the model of LeBaron [2002]):

re =max {0, k7 + (1 — k) r—1 +w },

where k € [0,1] specifies the degree to which the fundamental value reverts back to the
mean price 7. The u; term represents the system-wide shock at time ¢, which is normally
distributed: u; ~ N (0, 03).

The private valuation PV; for background trader i is simply a perturbed version of the
public fundamental at the arrival time ¢(7) of trader i:

PV; = max {0, d;},
where the deviated value is d; ~ N (ry(;), 0py).

3.3.2. Trading strategy. There is an extensive literature on heuristic strategies for trading in
CDAs [Friedman and Rust 1993; Wellman 2011]. Our investigation employs what is perhaps
the simplest strategy from this literature: the aptly named zero intelligence (Z1) strategy
[Gode and Sunder 1993]. ZI and related trading strategies have been widely employed in
agent-based financial models [Farmer et al. 2005; Paddrik et al. 2012], including MAS studies
[Das 2008; Niu et al. 2010].

A background trader i calculates its private valuation PV; as described above. It then
decides whether to buy or sell a unit of the good (each with probability 1/2), and chooses
an offset from its valuation—essentially the surplus the agent seeks from the trade. Seeking
surplus poses a tradeoff between trade profitability and execution probability. Under the
Z1 strategy, the agent selects an offset uniformly at random. Given a range R of admissible
offset values, ZI agent ¢ submits its bid at a nonnegative price p; ~ U [PV; — R, PV;] for
buy orders or p; ~ U [PV;, PV; + R] for sell orders.

To measure market efficiency, we compute total surplus (the sum of buyer and seller
surplus) for all background traders. If trader ¢’s limit order transacts at price p;, it achieves
raw (undiscounted) surplus:

PV; —p; for buy transactions, or
pi — PV, for sell transactions.

It follows that the total raw surplus when agent ¢ buys from agent j is PV; — PV}.

We discount a background trader’s raw surplus back to its arrival time at rate p, as in
the model of Goettler et al. [2009]. The discount is intended to represent not the time value
of money (which negligible at this time scale), but rather the traders’ general preference for
orders to trade earlier rather than later. Such time preference may be due to execution risk,
for example, or other costs of delay for related transactions. The raw surplus is discounted
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Fig. 3. Emergence of a latency arbitrage opportunity over two time steps in our two-market model. All
orders are for single-unit quantities. A red, bolded price highlights a discrepancy between the actual market
state and the NBBO, represented in the diagram as (BIDy, ASKy). At time ¢, the NBBO is up to
date. Background trader i wishes to sell at price 105. Since BIDy < 105 (which indicates non-immediate
execution), the investor’s order is routed to market 1. At time ¢ + 1, the NBBO is out of date, as the SIP
updates the public quote with some delay §. Background trader ¢ + 1 wishes to buy at 109; based on the
NBBO, its order is routed to market 2, its primary market. (Had its order been routed to market 1, its
bid would have transacted immediately.) The submission of its order to the inferior market opens up an
arbitrage opportunity between the two markets (BID2 > ASKi), which LA immediately exploits for a
guaranteed profit.

by a factor e *7, where the execution time T is the difference between transaction time
t and the trader’s arrival time t(i). For a transaction at time ¢, the total surplus with
discounting is:

e—P(t=t(1)) (PVi —p) + e—Pt=t()) (p: — PVj).
If its limit order never transacts, a trader’s surplus is zero.

3.4. Example

Figure 3 illustrates how a latency arbitrage opportunity may arise in our two-market model.
At time t, the NBBO quote is BIDy = 104 and ASKy = 110. Consider background
trader ¢, who wishes to submit a sell order at 105 to market 1, its primary market. To
determine the order routing, BID; is compared with the NBBO. As BIDy > BID;, the
alternate market appears to be superior. However, a sell offer at 105 would not transact
immediately (since BIDy = 104), so agent i’s order is routed to market 1. At the beginning
of time ¢t + 1, for latency 6 > 1, the SIP has not yet updated the NBBO to include the
order submitted at time ¢. Thus, the NBBO available to background investors is out of date:
the correct quote would be (104, 105), but the NBBO at time ¢ 4 1 is still (104,110) and
matches ASK, in market 2, incoming agent ¢ 4+ 1’s primary market. Consequently, agent
i+ 1’s buy order at price 109 is routed to its primary market. At this point, BI D5 (at price
109, submitted by agent i + 1) exceeds ASK; (at price 105, submitted by agent i), which
defines an arbitrage opportunity. Since LA is infinitely fast, it capitalizes on this disparity
by submitting bids to buy at 107 in market 1 and sell at 107 in market 2, realizing a profit
of 4.

4. SIMULATION SYSTEM

The financial markets we study are stochastic dynamic systems with discrete states that
change in response to communication events. These events occur at high frequency, and
distinctions on the order of milliseconds can be significant. To faithfully model such sys-
tems in simulation, ensuring the unambiguous timing of agent and market interactions is
paramount. We therefore design our system based on principles of discrete-event simulation
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(DES), which affords the precise specification of temporal changes in system state. In the
DES framework, a simulation run is modeled as a sequence of events. Each event is an in-
stantaneous occurrence that marks a change to the system state at a given time, and events
are maintained in a queue ordered by time of occurrence [Banks et al. 2005].

Our DES system simulates the interactions among traders in a set of markets. An event
in our system consists of a sequence of activities that are to be executed by various entities
(traders, markets, and the SIP). The events are ordered in a priority queue by event time
and executed sequentially until the event queue is empty. Multiple events may be scheduled
for the same time step, in which case they are executed deterministically in the order in
which they are enqueued. Each event’s list of activities is sequenced by priority; activities
with matching priorities are inserted in the order they arrive. Priorities are assigned based
on activity type (e.g., bid submission, market clearing). This guarantees determinism in the
sequential execution of activities and the correct operation of markets. Using this framework,
we ensure the latency arbitrageur is infinitely fast by inserting its trading strategy activity
at the end of every relevant event (such as a market admitting a new order).

To control the latency of the SIP, we specify three activities: SendToSIP, ProcessQuote,
and UpdateNBBO. The SendToSIP activity is inserted when a market publishes a quote at
time ¢; upon execution of this activity, the market sends its updated quote to the SIP entity
and inserts a ProcessQuote and an UpdateNBBO activity, both to execute at time t + J.
When ProcessQuote is executed, the SIP updates its information on the best quotes in
the markets. It then computes and publishes an updated NBBO based on this information
during the execution of the UpdateNBBO activity.

Figure 4 illustrates how the activities in our simulation system are sequenced to reflect
the communication latencies arising as a consequence of market fragmentation. Market 1
clears and publishes an updated quote at time ¢;. Market 2 publishes its new quote at
time to. For § > to — t1, a ProcessQuote followed by an UpdateNBBO activity is executed
sequentially at t; + J, as well as at time t5 4+ d. The UpdateNBBO executing at t; + § does
not incorporate market 2’s updated quote, as the ProcessQuote activity to add market 2’s
best quote (BIDs, ASK>) is not executed until to + §. This process serves to model the
behavior of the SIP with a delay of §.

: D o [endtostr iy =2 6
t, t t,+6 [ProcessQuote t,:(BID,, ASK,) > UpdateNBBO »

U

t, SendToSIP M, >

t,+6 [ProcessQuote t,:(BID; ASK,) > UpdateNBBO >

t,+& | ProcessQuote t,:(BID;, ASK;) UpdateNBBO

Activities: t,+6 [ProcessQuote t,:(BID, ASK,) > UpdateNBBO »
¢ Clear

* SendToSIP @

* ProcessQuote

t,+6 | ProcessQuote t,:(BID,, ASK,) UpdateNBBO

Fig. 4. Event queue during the dissemination and processing of updated market quotes for NBBO compu-
tation, given latency 6 > to — t1. There are two markets, M; and M>. When the NBBO update activity
executes at time t1 + §, the SIP has just processed market 1’s best quote (BID1, ASK1) at time ¢1; this is
therefore the most up-to-date information that could be reflected in the NBBO at time ¢; + 0.
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In our system, a market model specifies the number of markets, their associated clearing
rules, and the population of agents present within the model. To maximize the statistical
power of our experimental comparisons, we simulate multiple market models in parallel.
This enables the juxtaposition of fragmented and consolidated markets and facilitates the
comparison of agent behavior under varying market configurations.

We specify an agent population by describing an arrival process, a process for assigning
valuations, and the correspondent trading strategies. In our implementation, a separate
pool of background investors are created for each market model under study. We ensure
that identical sequences of arrival times and pseudorandom number generator seeds are used
to initialize these agents. Since the global fundamental remains consistent across the market
models, each ZI agent bid is essentially duplicated within each model. This conveniently
allows us to compare the performance of multiple market configurations given the same
underlying order stream.

To isolate the ramifications of market fragmentation, we consider two forms of centralized
market models in our simulations: a CDA and a call market. In contrast to a continuous-time
market, clearing in a discrete-time or call market takes place at designated intervals. A call
market eliminates latency arbitrage opportunities, as the periodic clearing mechanism makes
it impossible to gain or exploit informational advantages over other market participants
within the clearing interval.

5. EXPERIMENTS

Our experiments evaluate a variety of market configurations with respect to several perfor-
mance measures. The configurations address the following central issues:

— Presence of latency arbitrage: We include configurations of the two-market model
with and without LA.

— Market fragmentation: Along with the two-market model, we evaluate a centralized
configuration where the two markets are consolidated as one.

— Market clearing rules: Along with continuous markets, we include a discrete-time call
market setting. To facilitate direct comparison, in each run we set the clearing interval of
the call market to equal the NBBO update latency.

We are interested in the following performance characteristics:

— Allocative efficiency: Total surplus (welfare) is our key measure of market performance.
Efficiency indicates how well the market allocates trades according to underlying private
valuations.

— Liquidity: Markets are liquid to the extent they maintain availability of opportunities to
trade at prevailing prices. Two liquidity metrics are fast execution and tight BID-ASK
spreads. We measure execution time by the difference in time between order submission
and transaction for orders that eventually trade. Execution time is potentially important
to investors for many reasons, including the risk of changes in valuation while an order
is pending, the effect of transaction delay on other contingent decisions, and general time
preference. These factors are reflected in our surplus measures through the discount rate,
but a direct evaluation of execution time may also be of interest. We also measure spread,
which is the distance between prices quoted to buyers and sellers. Spreads are measured
over the first 3000 milliseconds in each simulation, as the majority of background traders
arrive within this time.

— Volatility: We measure volatility as the log of the standard deviation of midquote prices
(as sampled every 250 time steps) over the same interval as spreads.

— Price discovery: This reflects how well prices incorporate information. We measure price
discovery using the root mean square deviation (RMSD) between transaction price and
fundamental value at the time of trade.

864



Proceedings Article

3300000

“0-2M LA, ZI+LA  -2Mno LA

3200000 2M LA, Zlonly  -A-central CDA

3100000 i
3000000 2%

2900000 -

2800000 -

discounted surplus

2700000

2600000 T T T T
0 200 400 600 800 1000

latency

Fig. 5. Total discounted surplus in the two-market (2M) model, both with and without a latency arbi-
trageur, and in the centralized CDA market. In the two-market model with LA, both the total surplus (ZI
+ LA) and discounted background trader surplus (ZI only) are plotted. The discount rate p is 0.0006. Each
point reflects the average over 200 runs for each latency setting.

For each latency setting, we perform 200 simulation runs with 250 ZI agents in each market
model. The duration of each simulation is 15000 time steps (each step can be interpreted as
one millisecond). An equal proportion of background traders is assigned primary affiliation
with each market in a model. In the centralized call market, orders transact at a uniform
price each time the market clears; this price is the midpoint between the BID and ASK
quotes in the discrete-time market at the time of the clear.

We select environment parameters that generate sufficient arbitrage opportunities. The
threshold « for LA is fixed at 0.001. We set the mean fundamental value # = 100, 000,
mean-reversion parameter x = 0.05, and the variance parameters U%V = 100,000,000 and
o2 = 150,000,000. All bids have single-unit quantities, and we assume zero transaction
costs. The range for bid shading by background traders is R = 2000. The arrival rate
parameter is A = 0.075; a ZI agent arrives, on average, every 13 to 14 time steps. All ZI
agents submit their limit orders before the end of the simulation. The continuous discount
rate p is 0.0006 for all background traders. We select this high value of p to exert a strong bias
in favor of LA and against call markets—the profit of the latency arbitrageur is unaffected
by discounting as it is infinitely fast, and call markets impose an inherent delay in trading.

6. RESULTS

We find that the presence of a latency arbitrageur reduces total surplus (Section 6.1) and has
a mixed effect on market liquidity, reflected in slightly improved execution times but widened
bid-ask spreads (Section 6.2). Eliminating fragmentation reduces spreads while producing
surplus and execution metrics between the with and without LA cases. Replacing continuous
markets with periodic call markets eliminates latency arbitrage opportunities and achieves
substantial efficiency gains (Section 6.3).

6.1. Effect of LA on market efficiency

Figure 5 displays the total discounted surplus, over multiple latency settings, for the cen-
tralized CDA and the two-market model with and without a latency arbitrageur. The total
surplus of the two-market model without LA, as well as that of the centralized CDA market
(an unfragmented continuous-time market), exceeds that of the two-market model with LA,
whether or not the profits of LA are counted. In other words, the latency arbitrageur takes
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Table I. P-values for the comparison of total surplus between the centralized CDA/call markets and the
two-market model (2M) with and without LA. For instance, the row “CDA vs 2M (LA)" gives the p-values
(to four decimal places) for the superiority in surplus of the centralized CDA market over the two-market
model with LA. The p-values are computed by resampling 10,000 times.

[ Latency [0 [ 100300 | 400 600 | 700 | 800 | 900 | 1000 |
CDA vs 2M (LA) 0.4938 [ <0.0015 0 0 0 0 0
Call vs 2M (LA) 1.0000 0 0 0 0 0.0038 | 0.7548
2M (no LA) vs 2M (LA) | 0.4952 0 0 0 0 0 0
2M (no LA) vs CDA 0.5046 | <0.0350 | <0.0035 | 0.0027 | 0.0032 | 0.0022 | 0.0046
Call vs 2M (no LA) 1.0000 0 0 0.2153 | 0.9905 | 1.0000 | 1.0000

surplus away from the background investors, and the amount it deducts exceeds the gross
trading profit it accrues.

Note that when latency is zero, the various market models generate identical trade se-
quences for any given order stream. The NBBO is always correct if there is no delay, so
background trader orders are always routed to the right market and no arbitrage opportu-
nities emerge. It follows that the various market models at zero latency produce the same
total undiscounted surplus. There is a subtle disparity, however, in discounted surplus be-
tween the CDA and call markets—even at zero latency. CDA trades are executed at the
price of the incumbent order, whereas call markets set uniform prices. The pricing rule of
the market effectively dictates how surplus is distributed. For a zero-length clearing inter-
val, the call market’s uniform price occurs at the midpoint between the incumbent and
new matching orders. Since the new matching order clears immediately, only the incum-
bent order’s surplus is discounted; therefore, different ways of distributing the surplus yield
different discounted totals. Among the CDA models, the surplus division is the same, so
discounting produces the same result. The equality of surplus at zero latency is verified for
all four curves in Figure 5, which represent various CDA models simulated in parallel for
the same order streams.

We use resampling to compute p-values for: (1) the pairwise differences between the
centralized markets and the two-market model, both with and without LA; and (2) the
mean difference between the two-market model with and without LA. These results are
shown in Table I. The p-values represent the probability of obtaining surplus differences
at least as extreme as those observed if the actual distributions were identical. At zero
latency, the p-values between continuous markets are approximately 0.5 because the market
configurations behave identically in that setting. The call market surplus at zero latency is
significantly lower (hence p ~ 1.0), due to the differential effect of discounting noted above.
For latencies greater than zero, we find that the differences between the top three curves
shown in Figure 5 are all statistically significant. LA degrades efficiency in the two-market
model, and centralizing the markets in a consolidated CDA outperforms the fragmented
market with LA.

It may seem counterintuitive that the two-market model without LA is significantly better
than the centralized CDA. It turns out that for continuous markets, fragmentation can
actually provide a benefit, as the separated markets are less likely to admit inefficient trades
(i.e., where both traders’ values fall on the same side of the longer-term equilibrium price)
that arise due to the vagaries of arrival sequences. LA defeats this benefit by ensuring that
any orders that would match in the central CDA also trade in the fragmented case, albeit
with LA rather than with a counterpart investor.

6.2. Effect of LA on liquidity, volatility, and price discovery

We also evaluate the effect of latency arbitrage on market liquidity, as measured via ex-
ecution times and BID-ASK spreads. Figure 6(a) shows that execution time is highest
for the two-market model without LA. The fastest trade execution is achieved in the two-
market model with LA, which is qualitatively consistent with findings in the literature that
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Fig. 6. Mean execution time, median spread, and volatility. Execution time is the difference between bid
submission and transaction times, and spread is the amount by which ASK exceeds BID. The spreads
in the two-market models (2M) are the average of the individual markets. Price volatility is based on the
standard deviation of midquote prices sampled every 250 time steps. Spreads and volatility are measured
over a time period of length 3000. Each point reflects the average over all observations for each latency.

trading at lower latencies improves overall execution time [Angel et al. 2011; Garvey and
Wu 2010; Riordan and Storkenmaier 2012]. The improvement in execution time is at best
approximately 30 milliseconds, however, which is generally unobservable by non-HF traders.

Figure 6(b) shows that the highest spreads are those in the two-market model with LA. LA
also slightly exacerbates NBBO spreads, which are smaller than spreads of individual mar-
kets. The impact of latency arbitrage and market fragmentation on volatility (Figure 6(c))
is minimal, as the differences across the three market configurations are not statistically
significant. Overall, LA reduces trading delay at the cost of somewhat widened spreads.
The increase in spread could reflect an implicit transaction cost responsible for part of the
significant surplus reduction observed above.

LA improves price discovery, reducing RMSD to the level of the centralized CDA, which
is much lower than that observed in the two-market model without LA. In fragmented
markets not unified by the LA, transactions tend to involve older orders, which reflect the
fundamental value with greater time lag.
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Fig. 7. Total discounted surplus, execution time, spread, and volatility for the centralized call market and
the two-market (2M) model with LA. Each point reflects the average over all observations for each latency.

6.3. Discrete-time call market

Lastly, we evaluate the effect of switching to a discrete-time market. Figure 7(a) shows that
the total surplus in the centralized call market far exceeds that of the two-market model
with LA. By aggregating orders over time, call markets perform a more informed clear.
They increase the probability that trades occur between intra-marginal traders—those with
private valuations inside the equilibrium price range—and thus are less prone to executing
inefficient trades than CDAs [Gode and Sunder 1997].

In our call market model, the latency setting dictates the clearing period. From the figure,
we can see that the call market surplus increases dramatically between clearing periods 0
and 100, then peaks at latency 200 before declining steadily. This behavior is a reflection
of discounting, which we apply at a high rate (p = 0.0006) in order to bias against periodic
clearing. We select the smallest discount rate such that we obtain lower surplus—within the
range of latencies evaluated—in the centralized call market than in the two-market model
with LA. At this discount rate, there is an approximately 45% decline in utility for a fixed
amount of trade profit, for every additional second of execution time. In other words, an
extremely strong preference for small improvements in execution time is necessary before
the welfare of the two-market model with LA approaches that of the centralized call market.
Even with such steep discounting, the call market significantly outperforms the two-market
model with LA for latencies between 100 and 900, dipping to no significant difference at
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latency 1000 (Table I). Recall that the difference in total discounted surplus at zero latency
is because the call market selects a uniform price for each clear, thereby increasing the
incumbent (earlier) bid’s share of surplus and reducing total discounted surplus.

As shown in Figure 7(b), the mean execution time in the centralized call market is much
higher than that of the two-market model with LA. Unsurprisingly, we find a linear relation-
ship between latency and execution time in the centralized call market. As market clears
occur less frequently in this market model, it takes longer for a bid to match and be removed
from the order book. Moreover, as latency increases and the NBBO gets progressively out
of date, submitted orders are more prone to be routed to the inferior market. As a result,
submitted bids may linger in the order book for a while before a matching order arrives.
This phenomenon is responsible for higher RMSD observed in the centralized call market
than in the other market models.

In Figure 7(c), we observe that the tightest spread is realized in the centralized call
market. The median spread decreases with latency due to the accumulation of bids in the
order book, which is indicative of greater liquidity in the market. The temporal aggregation
in the centralized call market is also responsible for decreased volatility relative to the
two-market model with LA (Figure 7(d)).

6.4. Relationship between transactions and surplus

Figure 8 shows the total number of transactions for each market model, averaged over all
observations at a given latency. In Figure 8(a), the number of transactions in the centralized
call market declines as latency increases; this corresponds to the slowdown in surplus gains at
higher latencies for any additional delay. The number of transactions in the centralized CDA
and the two-market model without LA are comparable, though slightly lower in the latter.
This is consistent with our observations of surplus patterns in Figure 5. The two-market
model without LA results in higher surplus despite a reduction in number of transactions,
indicating that each transaction in the fragmented model is associated with more surplus
on average than in the centralized CDA. Figure 8(b) shows a breakdown of the number of
transactions attributed to the background ZI agents (light bar) and LA (dark bar). The
number of LA transactions increases with latency, as the number of arbitrage opportunities
grows as the NBBO update delay increases. Whereas the total number of transactions with
LA is higher than those in the other market models, the average surplus per transaction is
considerably lower. This provides further evidence that trades in the fragmented markets
with LA are often outside the efficient set.
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Fig. 8. Total number of transactions. In Figure 8(b), the light (dark) bar represents the total number of
Z1 (LA) transactions. Each bar reflects the average over all observations for each latency setting.
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7. CONCLUSION

To understand an important phenomenon in high-frequency trading, we introduced a two-
market model of latency arbitrage. We implemented this model in a system combining
agent-based modeling and discrete-event simulation in order to evaluate the interplay of
latency arbitrage, market fragmentation, and market design, as well as their consequences
for market performance. Our results demonstrate that market efficiency is negatively af-
fected by the actions of a latency arbitrageur, with no countervailing benefit in liquidity or
any other measured market performance characteristic. This key finding holds even given
an extreme temporal discount factor, which we imposed in order to tip the scales to favor
shorter execution intervals. Taking into consideration the substantial operational costs of
the latency arms race would only amplify our conclusions about the harmful implications
of this practice.

Virtually all modern financial markets employ continuous trading, which enables speed-
advantaged traders to make risk-free profits over fragmented markets and which degrades
overall efficiency. Our proposed alternative is a discrete-time call market, which elimi-
nates latency arbitrage opportunities and improves efficiency. A call market prevents high-
frequency traders from gaining a latency advantage, thereby increasing surplus for back-
ground traders. Aggregating orders over small, regular time intervals provides additional
efficiency gains, and in fact these benefits appear to overshadow the gains attributable
specifically to neutralizing latency arbitrage.

Our model offers a tool to policymakers and other researchers to more rigorously evaluate
financial market rules. We believe it can play a constructive role in the debate around HFT
and market structure, and we invite others—including those who may have reservations re-
garding the conclusions here—to propose either alternative scenarios or structural elements
that could be incorporated within our general framework. As with any simulation model,
our results are valid only to the extent our assumptions capture the essence of real-world
markets, and we are eager to explore extensions that would test the limits of our conclu-
sions. For example, the current model relies on an exceedingly simple characterization of
trader behavior, and it considers a limited range of regulatory mechanisms and responses.
Additional avenues for further study include examining the effect of more sophisticated
HFT and background trader strategies (such as those using historical information or re-
sponding to LA price signals), introducing other types of traders such as market makers,
and quantifying the impact of price discovery on efficiency. It would also be interesting to
examine interactions between multiple HFTs employing differing strategies and to evaluate
this model from a game-theoretic perspective.
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